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Preface

The present volume contains the invited contributions and a selection of pa-
pers presented at the 17th International Conference on Membrane Computing
(CMC17), held in Milan, Italy, from July 25 to July 29, 2016. Further addi-
tional information on this conference can be found at the following website:
http://cmc17.disco.unimib.it

The CMC series started with three workshops organized in Curtea de Argeş,
Romania, in 2000, 2001 and 2002. The workshops were then held in Tarragona,
Spain (2003), Milan, Italy (2004), Vienna, Austria (2005), Leiden, The Nether-
lands (2006), Thessaloniki, Greece (2007), and Edinburgh, UK (2008).

The 10th edition was organized again in Curtea de Argeş, in August 2009,
where it was decided to continue the series as the Conference on Membrane
Computing (CMC). The following editions were held in Jena, Germany (2010),
Fontainebleau, France (2011), Budapest, Hungary (2012), Chişinău, Moldova
(2013), Praha, Czech Republic (2014), and Valencia, Spain (2015).

CMC17 has been organized, under the auspices of the International Mem-
brane Computing Society, and the European Molecular Computing Consortium
(EMCC), by the Research Group On Molecular Computing of the Department of
Informatics, Systems, and Communication, at the University of Milano-Bicocca.

CMC17 consisted of three different parts: the first day, representatives of re-
search groups working on membrane computing presented recent research activ-
ities of the group, described the composition of the research team, and presented
research networks and projects they are involved in. From Tuesday to Thursday
the conference continued with standard sessions; invited lectures were given by
Matteo Cavaliere (Edinburgh, UK), Thomas Hinze (Cottbus, Germany), Paolo
Milazzo (Pisa, Italy), and Agust́ın Riscos-Núñez (Sevilla, Spain). The last day of
the conference was devoted to interaction between participants, to discuss open
problems and propose new research topics.

The editors express their gratitude to the Program Committee, the invited
speakers, the authors of the papers, the reviewers, and all the participants for
their contributions to the success of CMC17.

The support of the Department of Informatics, Systems, and Communication
of the University of Milano-Bicocca and the Prize for the Best Student Paper
awards granted by Springer-Verlag are gratefully acknowledged.

July 2016 Alberto Leporati
Claudio Zandron
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Petr Sośık (Opava, Czech Republic)
Kumbakonam Govindarajan Subramanian (Penang, Malaysia)
György Vaszil (Debrecen, Hungary)
Sergey Verlan (Paris, France)
Claudio Zandron (Milan, Italy) – Co-chair
Gexiang Zhang (Chengdu, China)

The Organizing Committee of CMC17 consists of

Alberto Leporati (Milan, Italy) – Co-chair
Luca Manzoni (Milan, Italy)
Antonio Enrico Porreca (Milan, Italy)
Claudio Zandron (Milan, Italy) – Co-chair

– VI –



Proceedings of CMC 17 Milan, 25-29 July, 2016

The Programme Committee of CMC17 consists of

Artiom Alhazov (Chişinău, Moldova)
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Agust́ın Riscos-Núñez (Sevilla, Spain)
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Kernel P Systems Modelling, Testing and Verification - Sorting Case Study 161

Marian Gheorghe, Rodica Ceterchi, Florentin Ipate, and Savas
Konur

Walking Membranes: Grid-exploring P Systems with Artificial
Evolution for Multi-purpose Topological Optimisation of Cascaded
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Thomas Hinze, Lea Louise Weber, and Uwe Hatnik

Agent-Based Simulation of Kernel P Systems with Division Rules Using
FLAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Raluca Lefticaru, Luis Felipe Maćıas-Ramos, Ionuţ Mihai Niculescu,
and Laurenţiu Mierlă
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Kristóf Kántor and György Vaszil

A characterization of symport/antiport P systems through Information
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
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Eco-Evo Dynamics
and the Role of Cellular Computing

Matteo Cavaliere

University of Edinburgh, UK
mcavali2@staffmail.ed.ac.uk

In the commons, where the sustainability of communities depends on the
presence of public goods, individuals often rely on (surprisingly) simple strate-
gies to decide whether to contribute to the shared resource, i.e., public good (at
risk of exploitation by free-riders, i.e., cheaters). This issue is observed in natural
scenarios across different scales including cellular populations [5, 3]. As discussed
in [2] simple cellular strategies, that exhibit limited information processing can
be adjusted to exploit certain environmental constraints to attain sustainable
growth - resilient to the invasion of cellular cheaters. This is obtained by cou-
pling cellular decision-making to the core structural factors characterizing the
cellular community, such as the size of its constituent groups or the resource
characteristics, i.e., the public good efficiency. A very simple type of cellular
decision-making is (trivially) the permanent production of public good. Such
strategy only works when its creation efficiently induces growth and the com-
mons is structured in relatively small groups. However, a simple strategy that
stochastically alternates between contribution and non-contribution enlarges the
range of commons where its adoption leads to sustainability. Moreover, two op-
posite conditional strategies –in which a simple sensing mechanism is at work
– are effective in two contrasting environmental situations: positive plasticity
(i.e., contribute only when most individuals are contributing) works for low pu-
bic good efficiency and small groups, negative plasticity (contribute only when
it is strictly necessary, i.e., contribute when few individuals are contributing)
does it for high public good efficiency and large groups. Therefore, simple cel-
lular computations associated to limited information processing [6] are effective
against cheaters due to the specific ecological structure where they are applied,
an issue originally raised in different contexts by H. Simon [7]. Results have been
originally obtained by considering a stylized computational public-good model
(in which a finite population of agents (cells) is organized in groups where they
are involved in a public-good game, and the supply of public good determines
population density). The ability of cells to monitor the environment and decide
their contribution is then modeled by using finite state automata. Recently, the
results have been experimentally shown in natural bacterial systems [1] and in
synthetic ones [4].

References
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Coping with Dynamical Structures for Useful
Applications of Membrane Computing

Thomas Hinze

Brandenburg University of Technology, Institute of Computer Science
Postfach 10 13 44, D-03013 Cottbus

Friedrich Schiller University Jena, Ernst-Abbe-Platz 1–4, D-07743 Jena

thomas.hinze@b-tu.de

Extended Abstract

1 Biological Information Processing Primarily Utilises
Dynamical Structures at Different Levels

Coping with dynamical structures turns out to be both, a challenging task but
also a crucial clue in understanding, fine-grained modelling, and utilisation of bi-
ological and biologically inspired information processing [8]. Principles of molec-
ular computing are mainly based on modifiable spatial and topological arrange-
ments in different forms, contexts, and scales ranging from nanoscopic surface
shapes up to complex macroscopic behavioural patterns. From a composition-
oriented point of view, we identify at least four levels in which dynamical struc-
tures essentially occur:

1. The molecular level comprises spatial grouping of atoms by chemical bonds
forming macromolecules. Corresponding intramolecular structures of DNA,
RNA, and proteins constitute their functionality as data carrier and storage
medium along with a co-ordinated set of biochemical reaction schemes. Cell
signalling gives an illustrative example. Here, external stimuli like hormones
or environmental factors reach receptors at the outer face of a cell membrane.
At its inner part, signalling proteins and second messengers (ligands) are re-
leased. By passing a signalling cascade, signalling proteins become activated
by a specific combination of ligands residing at protein binding sites. This
results in composition of a dedicated molecular structure acting as transcrip-
tion factor which in turn can enter the cell nucleus and afterwards initiate
a specific gene expression producing a cell response. Even without modifi-
cation of chemical bonds, we can observe dynamical molecular structures in
a functional context. Let us consider an ion channel : It mainly consists of
a transmembrane protein incorporating a controllable gate. Cations accu-
mulate close to the channel entry outside the cell. As far as enough cations
are present, the gate temporarily opens for a short moment, and an amount
of cations can pass the channel into the cell inducing a spiking signal. The
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function of the underlying gate is based on a dynamically movable side chain
inside the transmembrane protein. Ion channels can for instance act as tem-
perature sensors producing a frequency-encoded oscillatory spiking signal
[6].

2. The level of reaction network modules opens the next stage of dy-
namical structures. Chemical reaction schemes, particularly those found in
living organisms, apper to represent invisible networks. Nevertheless, they
represent the driving force in information processing by conducting state
transitions from one molecular configuration to another one. The topology
of a chemical reaction network is commonly treated as a static structure due
to its highly conserved genetic blueprint. A corresponding network of densely
interwoven reactions forms a module, an elementary unit also called motif.
Structural dynamics becomes visible when studying the interplay of reaction
network modules over time. It turns out that several modules merge or cou-
ple to each other temporarily while modular compounds can also dissolve,
re-arrange, or re-assembly. Initiated by trigger signals, by perturbances, or
simply by random, network re-compositions arise. Photosynthesis is repre-
sentative for that: Depending on presence or absence of light, different reac-
tion schemes are active. Light intensity toggles between several underlying
reaction network topologies composed of a set of modules. Another obvious
example is given by mutation or recombination of genetic DNA which results
in modified reaction network structures. Also infection of a cell by a virus
or bacterial gene transfer can have similar effects. When aiming at under-
standing of maintenance of life, dynamics of reaction network structures is
essential.

3. Increasing within the hierarchy, the level of membranes characterises a
new quality of dynamical structures. Membranes enable a compartmentali-
sation of spatial structures in which chemical reactions and transportation
processes appear. Having in mind that membranes form a physical bound-
ary and they offer a selective or general permeability for molecules at the
same time, it becomes obvious that dynamics at this level can imply pow-
erful features [11]. Cell division is probably the most popular example of a
dynamical membrane structure. Following this line, the formation of tissues,
organs, and finally multi-cellular organisms exhibits an amazing capability
of self-organisation [2] and self-coordination [1]. For instance, the spatial
derivation of cytokines manages the progress in cellular differentiation. Ex-
ocytosis as well as endocytosis in conjunction with membrane creation and
dissolution provides molecular containers for directed transportation. Often,
membrane structures need to be assembled in an optimal way in order to
achive a certain functionality at its best. Optimal placement of branches and
junctions within capillar blood vessels for adequate supply of neighboured
cells keeping low the overall need of molecular resources is a typical outcome.
More notably, using neural plasticity the process of (re)mapping the brain
structure emerges.

4. The higher-order organism or population level marks the topmost
instance of dynamical structures found in complex biological systems. Un-
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equivocally, underlying rules, principles, or laws responsible for control and
development of the corresponding structures are often hard to identify and
sometimes prone to errors, misinterpretations, or incompleteness. State-of-
the-art approaches attempt to identify the rules by comprehensive statisti-
cal analyses of huge amounts of experimentally observed data resulting from
macroscopic behavioural patterns [10]. A simple example is a predator-prey
system for instance consisting of a population of rabbits and a population
of foxes sharing the same living area. Dependent on relevant parameter val-
ues like rabbit’s birth rate, fox’s death rate and feeding activity, the system
exhibits various behavioural patterns like stable oscillation with variable pe-
riodicity, extinction of foxes, or exponential growth of involved populations.
An opposite example is symbiosis of organisms or populations. Moreover,
swarms, colonies, and societies create highly complex behavioural patterns
incorporating fascinating properties like cooperation, altruism, cognition,
consciousness, or intelligence. Many of these properties still lack a formal
definition based on substantiated understanding.

2 Membrane Systems for Explicit Formalisation of
Structural Dynamics at Different Levels

Due to its discrete nature composed of algebraic elements, membrane systems
appear to be an ideal candidate able to describe dynamical structures on ade-
quate levels of abstraction [12]. Within research projects during the last years,
we developed several P systems frameworks coping within dynamical structures
at molecular level, at the level of reaction network modules, and at the level of
membranes. Most of these descriptive frameworks come with simulation software
tools employed for tackling a number of application case studies.

P systems for cell signalling modules (ΠCSM) act at the molecular level [5].
Here, each molecule is represented by a regular expression denoted as a string.
The characters within the string reflect the underlying signalling protein name
together with an arbitrary number of ligands which in turn can be individually
present or absent in the protein structure. Unknown or irrelevant binding situa-
tions are allowed to be written by a placeholder symbol (?). A multiset of strings
constructed in this way defines the initial pool of molecules. The set of reaction
rules is also allowed to utilise placeholder symbols when describing substrates or
products. Hence, the number of reaction rules can be kept low. Execution of a
reaction rule includes a matching process which identifies the affected substrate
molecules. We equipped the system’s specification with a discretised form of re-
action kinetics estimating the selection of substrate molecules taken into account
per time step for each available reaction. Based on the ΠCSM framework, the
simulation software SRSim emerged in which SR stands for “structural rules”
but also for “spatial rules” [3]. In addition to the string describing a molecule,
three-dimensional cartesian coordinates together with bond length and angles
can be assigned to each molecular component. In this way, a reactive calotte-like
model of each molecule is obtained.

– 5 –
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Within the level of reaction network modules, we introduced the P meta
framework for polymorphic processes [4, 7]. Here, the main focus of attention
is laid to dynamical composition and decomposition of modules towards for-
malisation of more complex system’s behaviour. We permit modifications of the
module connectivity at arbitrary points in time but also subject to conditional
trigger signals. This feature offers a high flexibility in formalisation of measur-
able system’s properties which can be helpful to bring in silico-simulations closer
to experimental observations. Furthermore, a compact but expressive formalism
is provided to manage dynamical topologies of reaction network structures. The
underlying concept resembles an event-based programming language: A program
is built of a final set of instructions. Each instruction contains a specific con-
dition (a boolean term based on evaluation of elapsed model time and condi-
tional trigger signals) followed by a corresponding action. An action could be
the connection of two dedicated modules including coupling of shared species
and supply of affected signal values. Other actions incorporate disconnection of
modules, coupling/decoupling of additional species, module exchange, or mod-
ule reset. The sequence of instructions defines individual priorities in order to
prevent ambiguities.

Aimed at exploring abilities of self-organisation by dynamical structures
within the level of membranes, we currently elaborate the idea of grid-exploring
P systems assuming an initial grid of membranes. Each membrane on its own acts
in terms of a module. It can be entered, passed, and left by molecules. In some
dedicated modules called processing units, molecules can be processed by reac-
tions of different types like composition (a+ b→ c), incorporation (a+ b→ a),
and unification (a + a → b). Molecules initially placed at different positions of
the grid’s boundary individually run through the grid visiting a sequence of des-
ignated membranes in which they become successively processed. Using artificial
evolution, the arrangement of membranes within the grid becomes optimised for
shortening the total time duration necessary for complete passage and process-
ing of all molecules. We employ grid-exploring P systems for topological grid
optimisation using artificial evolution which in turn cares for variation of grid
elements following the metaphor of walking membranes.

3 Usefulness of Membrane Systems Managing Dynamical
Structures

Convincing simulations and visualisations of biological and biologically inspired
processes utilising dynamical structures can be seen as a first and essential step
towards a beneficial toolbox of complementary membrane system instances. Be-
yond pure system’s definition along with estimation of its computational capac-
ity, our research is focused on identification and exploration of useful practical
applications and application scenarios for membrane systems managing dynam-
ical structures. Projects and case studies are motivated by finding hypotheses to
explain phenomena and afterwards being able to predict a system’s behaviour.
Having this knowledge at hand, it is worth to become adopted and adapted for
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suitable engineering tasks in terms of bionics like construction of a girder inspired
by a bone structure. Another application objective is dedicated to optimise a
system’s behaviour like the best possible topological arrangement of processing
units on a grid. We believe that bringing together the descriptive advantages of
membrane systems with the existence of biological phenomena under study and
capabilities of data mining could be a fruitful strategy. To this end, we closely
collaborate with experts of life sciences, engineering, or natural sciences in an
interdisciplinary manner.

References

1. F. Bernardini, M. Gheorghe, N. Krasnogor, J.L. Giavitto. On Self-assembly in
Population P Systems. Lecture Notes in Computer Science 3699:46-57, 2005

2. S. Camazine, J.L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraulaz, E. Bonabeau.
Self-Organization in Biological Systems. Princeton University Press, 2003

3. G. Gruenert, B. Ibrahim, T. Lenser, M. Lohel, T. Hinze, P. Dittrich. Rule-based
spatial modeling with diffusing, geometrically constrained molecules. BMC Bioin-
formatics 11:307, 2010

4. T. Hinze, B. Schell, M. Schumann, C. Bodenstein. Maintenance of Chronobiological
Information by P System Mediated Assembly of Control Units for Oscillatory
Waveforms and Frequency. Lecture Notes in Computer Science 7762:208-227, 2013

5. T. Hinze, J. Behre, C. Bodenstein, G. Escuela, G. Grünert, P. Hofstedt, Pe. Sauer,
S. Hayat, P. Dittrich. Membrane Systems and Tools Combining Dynamical Struc-
tures with Reaction Kinetics for Applications in Chronobiology. In P. Frisco, M.
Gheorghe, M.J. Perez-Jimenez (Eds.), Applications of Membrane Computing in
Systems and Synthetic Biology., Series Emergence, Complexity, and Computation,
Vol. 7, pp. 133-173, Springer Verlag, 2014

6. T. Hinze, K. Kirkici, Pa. Sauer, Pe. Sauer, J. Behre. Membrane Computing Meets
Temperature: A Thermoreceptor Model as Molecular Slide Rule with Evolutionary
Potential. Lecture Notes in Computer Science 9504:215-235, 2015

7. T. Hinze, J. Behre, K. Kirkici, Pa. Sauer, Pe. Sauer, S. Hayat. Passion to P for
Polymorphic Processes in Practice. In M. Gheorghe, I. Petre, M.J. Perez-Jimenez,
G. Rozenberg, A. Salomaa (Eds.), Multidisciplinary Creativity. Spandugino, 2016

8. H. Kitano. Computational Systems Biology. Nature 420:206-210, 2002
9. C. Martin-Vide, G. Paun, J. Pazos, A. Rodriguez-Paton. Tissue P Systems. The-

oretical Computer Science 296(2):295-326, 2003
10. N. Matsumaru, T. Lenser, T. Hinze, P. Dittrich. Toward Organization-Oriented

Chemical Programming: A Case Study with the Maximal Independent Set Prob-
lem. In F. Dressler, I. Carreras (Eds.), Advances in Biologically Inspired Infor-
mation Systems: Models, Methods, and Tools. Series Studies in Computational
Intelligence, Vol. 69, pp. 147-163, Springer Verlag, 2007

11. A.E. Porreca, A. Leporati, G. Mauri, C. Zandron. P systems with active membranes
working in polynomial space. International Journal of Foundations of Computer
Science 22(1):65-73, 2011
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Applications of P systems in population biology
and ecology

Paolo Milazzo

Dipartimento di Informatica
University of Pisa, Italy
milazzo@di.unipi.it

Abstract

Maximal parallelism, one of the distinguishing features of P systems, is partic-
ularly suitable for the modelling of populations that evolve by stages in which
all of the individuals are involved in the same activity (e.g. reproduction, hiber-
nation, natural selection). In order for maximal parallelism to be successfully
exploited for the modelling of populations and ecosystems, it is necessary to
cope it with a form of probabilistic choice of evolution rules. In addition, also
rule promoters turn out to be useful for the modelling of stage-based popula-
tion dynamics. Indeed, they are a simple mechanism that allows evolution rules
describing activities of the different stages to be properly alternated.

Minimal probabilistic P systems (MPP systems) [2] are a variant of P systems
that we recently proposed and that includes only the above mentioned features.
Although simple, such a variant of P systems allows for the development of very
concise models of populations and ecosystems. We applied MPP systems to study
the stability of some kinds of European water frog populations. In particular, we
faced the problem of understanding why in some of these populations (known as
”L-E complexes”) that are the results of hybridization of two different kinds of
frog, potentially lethal DNA mutations are accumulated in the genotype of the
hybrid individuals. Model analysis allowed us to formulate the hypothesis that
such mutations are actually necessary, together with a form of sexual selection,
to avoid extinction of the whole population [5]. Moreover, we used the model
to predict the effect of the introduction in a L-E complex of few individuals of
the original kinds of frog (denoted R) from which the hybrid population was
obtained. The result was that in many cases, due to the particular reproductive
patterns of these animals, the introduction led either to the replacement of the
L-E population with a population of only R individuals, or to the extinction of
the whole population.

As model analysis techniques for MPP systems we considered probabilis-
tic simulation and statistical model checking. Probabilistic simulation gives the
trace of an individual model execution in a rather short time. Statistical model
checking can be seen as a way of performing statistical analysis of simulation
results in a very organized way, by formulating queries denoted as temporal
logic formulas. Such a form of model checking is actually an approximated form
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of probabilistic model checking in which the exploration of the state space de-
scribing the behaviour of the modelled system is not exhaustive, but limited to
a number of traces obtained by means of probabilistic simulation. In the case
study of European water frog populations we used statistical model checking to
precisely compute the probability of extinction of the population in the different
considered scenarios, and also to compute the probabilities of some causality
properties that allowed us to identify observable situations that are early pre-
dictors of the extinction of the whole population.

Obviously, not all the aspects of stage-based populations can be described
concisely by MPP systems. For instance, spatiality aspects as well as age struc-
tures and social hierarchies require several objects and rules to be defined in the
model in order to take into account all parameters of each individual (e.g. posi-
tion, age, dominance level). In order to allow also these aspects of populations
and ecosystems to be suitably dealt with, in the last few years we proposed other
variants of P systems such as attributed probabilistic P systems (APP systems)
[1] and spatial P systems [4, 3].
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Abstract. Some of the theoretical open problems and current challenges
concerning P systems from a theoretical perspective will be discussed,
focusing on results related to searching bounds for computational com-
plexity classes in general, and to the P vs NP problem and the Păun’s
conjecture in particular.
Membrane computing is already a mature field, and the research commu-
nity around it is becoming more interdisciplinary and diverse. Although
nowadays it seems that practical applications receive a rapidly increasing
attention, there are still key theoretical issues that need to be addressed.

Since the dawn of membrane computing, a huge number of universality re-
sults have been obtained, showing how to reach a computing power equivalent
to Turing machines, considering P systems as computing devices (both in ac-
cepting or generative mode). Another important research direction consists on
studying ways to generate an exponential workspace in polynomial time (i.e. in
a polynomial number of transition steps), enabling significant speed-ups in solu-
tions to hard problems. Informally speaking, computational complexity classes
are introduced in membrane computing as follows: for each P system model, its
associated complexity class is the set of all problems solvable in polynomial time
by using such type of P systems [1]. These complexity classes can be compared
against the “classical” ones within Chomsky hierarchy.

The talk will overview theoretical results from the literature, illustrating the
different techniques used in the proofs, as well as some applications of the results
and the techniques. Open problems in these areas usually involve removing or
restricting some of the ingredients of a P system model, in order to determine
whether such an ingredient plays a relevant role or not, as far as the power of the
model is concerned. This gives rise in a natural way to alternative formulations
for borderlines of tractability, which provide, in turn, different approaches to
tackle the P vs NP problem.
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Abstract. We show multiple ways to simulate R systems by non-
cooperative P systems with atomic control by promoters and/or in-
hibitors, or with matter-antimatter annihilation rules, with a slowdown
by a factor of constant. The descriptional complexity is also linear with
respect to that of simulated R system. All these constants depend on
how general the model of R systems is, as well as on the chosen control
ingredients of P systems. Special attention is paid to the differences in
the mode of rule application in these models.

1 Introduction. Differences between P and R

Membrane systems, also called P systems (non-distributed, with symbol objects)
are a formal model of (possibly controlled) multiset rewriting [8]. Reaction sys-
tems, also called R systems, is also a formal rewriting-like model of set evolution
introduced in [6], see also a recent survey [5]. Both P systems and R systems are
inspired by the functioning of the living cells. It is a natural task to compare R
systems, which was introduced later, to P systems, by simulation. A successful
solution would allow us to use membrane computing tools for studying reaction
systems. Some research comparing them was done in [10]. More exactly, the
cited paper considers P systems with no-persistence aspect of R systems, from
the viewpoint of the computational power. We, however, first focus on compar-
ing standard R systems to standard P systems by simulating the former with
latter, and then revisit the direction of bringing aspects of R systems to the P
systems model, verifying how closer this can make the models.

We start the explanation of the simplest case – triples of single objects.
Rules in R systems have form (a, b, c), which loosely correspond to a → c|¬b in
P systems, i.e., the first element is the reactant (in this paper we may also call
it the left side) the second element is the product (in this paper we may also
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call it the right side), and the third element is the inhibitor, with the following
differences in the mode of application.

The first difference is that the configuration is a set, not a multiset, and
thus simultaneously producing the same symbol by multiple rules yields a sin-
gle object. P systems with sets of objects instead of multisets of objects have
been considered in [1], where they have been shown to be universal in the dis-
tributed P systems, both for the transitional model, and for the model with
active membranes. However, in [1] the goal of showing universality was reached
without actually using this first aspect (automatic reduction of multiple copies
of identical object into one object), but rather by avoiding to ever need multiple
copies of the same object (in the same region). This aspect, combined with the
one below, are called the threshold principle in the literature. However, it is also
meaningful to view these aspects individually.

The second difference is that, if multiple rules with the same a in the left
side exists, (if a is present in the configuration, for all of these rules where the
inhibitors are not present in the configuration) all these rules are applied, simul-
taneously producing the corresponding products. This comes from an inspiration
that either the abundance of objects a is sufficient, or the replication and, pos-
sibly, proper control take place to guarantee the application of all such rules.
This second aspect is standard, for instance, in H systems (together with the
first one), e.g., see [11]. The second aspect has been already considered also in
P systems area, see, for example, see [3].

The third difference is that the objects are not persistent. This means that,
even if an object does not undergo any rule, it still disappears from the configu-
ration of the next step, unless, of course, it is produced by some rule. This third
aspect is standard in time-varying distributed H systems, for example see [9, 12],
together with the first and second ones, and they relate especially naturally to
TVDH1 systems, see [7].

In the general case, the elements of the triples describing the rules of R
systems are sets of objects. Hence, the meaning of the triple (A,B,C) is: the
joint presence of objects in A, in the case when all objects in B are absent, leads
to production of objects in C, and, moreover, the subsequent configuration is
precisely equal to the union of the right sides of applicable rules (possibly united
with the input context).

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing, see [13] for a comprehensive introduction and the
webpage [15] of P systems.

The notation (ncoo, prok,l + inhk′,l′) describes the possible class of rules:
non-cooperative evolution with at most k promoters of weight at most l and at
most k′ inhibitors of weight at most l′, see [4, 14]; the sign “+” here means both
promoters and inhibitors are allowed to be used in the same rule, if it is not the
case, we write a comma instead of a plus sign.
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The notation (ncoo, antim/pri) stands for non-cooperative evolution rules
and matter-antimatter annihilation rules, with weak priority of all annihilation
rules assumed over all other rules (the most studied variant of P systems with
antimatter), see [2].

3 Using promoters and inhibitors

In fact, in terms of intuition from P systems, A is more similar to a promoter than
a reactant (and there is no difference between a set of distinct atomic promoters
and a corresponding one higher-weight promoter), and B corresponds to a set
of atomic inhibitors (if B were a single higher-weight inhibitor, it would disable
the rule when all its elements are present, not just any of them, which would not
correspond to the correct definition). However, within the traditional P systems
mode, we would additionally need to restrict the rule application to only once
per step.

We recall that a rule with the set of atomic inhibitors {a, b} will be disabled
in configurations in which either a or b is present, while a rule equipped with the
higher-weight inhibitor ab will only be disabled when both a and b are present
in the configuration.

3.1 Using powerful rules

Hence, an arbitrary general R system with alphabet V of k symbols and rules
(Ai, Bi, Ci), 1 ≤ i ≤ n could be written as the following P system (non-
cooperative, but with powerful promoters and inhibitors), having additional ob-
jects I1 and di for all 1 ≤ i ≤ n:

Π0 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ {I1},
R1 = {di →

∏
c∈Ci

c|Ai,{¬b|b∈Bi}, di → λ|¬Ai
, di → λ|b | b ∈ Bi, 1 ≤ i ≤ n}

∪ {a→ λ | a ∈ V } ∪ {I1 → I1
∏

1≤i≤n
di}.

This combination of features only takes one step to simulate a step of R systems,
n+ k+ 1 symbols and 2n+ k+ 1 +

∑
1≤i≤n |Bi| rules. Note that the first rule in

the description of R1 uses a higher-weight promoter together with a set of atomic
inhibitors. Also note that in a special case when the rules of the simulated R
system are triples of single symbols, the control used becomes atomic promoters
together with atomic inhibitors.

In the rest of the paper we show how to achieve the same goal with P systems
having more restricted rules, also discussing how to produce only one copy of
symbols present in the simulated R system. We use promoters and inhibitors,
then consider only one kind of these features, then we replace them by matter-
antimatter annihilation rules, and finally, we discuss how much the problem is
simplified if some of the aspects of R systems are assumed by the P systems
model.
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3.2 Triples of symbols

We start with the simplest case - when the elements of triples describing the
rules are single elements. Consider such an R system S with alphabet V and
rules {(ai, bi, ci) | 1 ≤ i ≤ n}. We construct a P system Π1 simulating S,
where the initial configuration w1 matches the initial configuration of S, and the
following rules, the simulation taking only 2 steps:

Π1 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n},
R1 = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {di → ci|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }.

The simulation task here is simple for two reasons: we took the simpler model
of R systems, and using promoters besides inhibitors makes it possible to remove
unneeded objects easily. We also note that the number of objects and rules can
be decreased by not producing a′ when a participates in the left side of any rule,
and using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter and inhibitor.

If |V | = k, then |O| = 2k+n and |R1| = 2k+2n. Moreover, the optimization
described in the previous paragraph decreases both |O| and |R1| by the number
of symbols appearing on the left side of some rule of S.

The multiplicities of symbols may grow. When the same symbol is produced
simultaneously by multiple rules, the multiplicative effect happens. It is, however,
fairly easy to reset the multiplicities of objects in V to one, at a cost of one more
step, 2k + 3 additional symbols in O and 3k + 3 additional rules, also using an
additional object I1 in the initial configuration:

Π2 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n},∪{I1, I2, I3}
Ri = {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2},

Rii = {di → (ci)
′′|¬(bi)′ , di → λ|(bi)′ | 1 ≤ i ≤ n}

∪ {a′ → λ | a ∈ V } ∪ {I2 → I3
∏

a∈V
a},

Riii = {a→ a|a′′ , a→ λ|¬a′′ , a′′ → λ | a ∈ V } ∪ {I3 → I1}.

3.3 Triples of sets

Now the task is more complicated. While generating a set Ci instead of symbol
ci is straightforward, instead of verifying that ai is present and bi is absent, rule
applicability is defined as presence of all symbols from set Ai and absence of all
symbols from set Bi. We recall that our task is a constant-time solution. Notice
that the rule is not applicable if and only if some symbol from Ai is absent or
some symbol from Bi is present.
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Consider such an R system S with alphabet V and rules {(Ai, Bi, Ci) | 1 ≤
i ≤ n}. We construct a P system Π3 simulating S, where the initial configuration
matches the initial configuration of S, plus an additional object I1, and the
following rules, the simulation taking only 3 steps:

Π3 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → d1 · · · dnI2}
∪ {di → λ|¬a, di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3}
∪ {di →

∏
c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {a→ λ|I3 | a ∈ V } ∪ {I3 → I1}.

If |V | = k, then |O| = k+ n+ 3 and |R1| = k+ n+ 3 +
∑

1≤i≤k(|Ai|+ |Bi|).
Notice also that, besides objects from V , no object ever appears in multiple
copies. As for each object from V , its multiplicity represents the number of rules
in S that has produced it in the last simulated step. Unlike the construction
from the previous section, the multiplicative effect does not carry over to the
next step of computation of S, since each object from V (except the instances
in the starting configuration) is produced from some object di, produced in
one copy, effectively resetting the multiplicities of the previous step. However,
producing objects in V in a single copy requires additional overhead. Similarly
to obtaining Π2 from Π1, we can obtain Π4 from Π3, at the price of one more
step, 2k + 1 additional symbols in O and 3k + 1 additional rules. We skip the
details.

3.4 Using only promoters

It should not be any surprise that (in the maximally parallel mode) the effect
of inhibitors can be obtained by non-cooperative rules with promoters only.
Informally, to verify that some object b is absent, we first check if b is present
by some rule a → a′|b, and it suffices to check in the next step whether a is
unchanged. The reverse, i.e. replacing promoters with inhibitors, is even easier
to see, since promoting a rule by b can be modeled by inhibiting a rule by some
immediately-erased object b′, creation of which is inhibited by b. We still think
it is interesting to consider the use of only promoters or only inhibitors, for
two reasons. First, the reduction of promoters/inhibitors in the general case of
P systems is too complicated, and second, we would like to explore how little
overhead in terms of slowdown and descriptional complexity would suffice to
achieve our task.

First, as an exercise, we construct a P system for an R system S with triples
of symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial
configuration of S, plus an additional object I1.

Π5 = (O,µ = [ ]
1
, w1, R1) where
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O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3} ∪ {di → λ|(bi)′ | 1 ≤ i ≤ n} ∪ {a
′ → λ | a ∈ V }

∪ {I3 → I1} ∪ {di → ci|I3 , | 1 ≤ i ≤ n}.

This construction is obtained from the first one with promoters and in-
hibitors, implementing the group of rules with inhibitors (contrasted with ex-
isting rules with the same objects as promoters) in the next step, promoted by
“timer” I3. We also note, similarly to Π1, that the number of objects and rules
can be decreased by not producing a′ when a participates in the left side of any
rule, and using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter. Once again, this
simulation has multiplicative effect, and the multiplicities can be reset to one, at
the price of one more step, 2k+ 1 additional symbols in O and 3k+ 1 additional
rules. Let us call the obtained system Π6. We omit the details, only mentioning
that instead of rules a→ λ|¬a′′ as in Π2, we can erase these symbols in the next
step by rules a→ λ|I1 .

Now consider the general case of simulating an R system S with alphabet
V and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the
initial configuration which matches the initial configuration of S, plus additional
objects I1 and a′ for each a ∈ V .

Π7 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3},
Ri = {I1 → d1 · · · dnI2} ∪ {a′ → λ|a | a ∈ V },
Rii = {di → λ|a′ , di → λ|b | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {a→ λ|I2 , a′ → λ|I2 | a ∈ V } ∪ {I2 → I3},

Riii = {di →
∏

c∈Ci

c|I3 | 1 ≤ i ≤ n} ∪ {I3 → I1
∏

a∈V
a′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects a′ is to survive for one step if and only
if the corresponding object a is present, to be used as a promoter instead of in-
hibitor a; objects a′ are recreated in the last step, for the next simulation cycle.
Moreover, as now objects from V are no longer used as inhibitors, they can be
removed one step earlier.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 2k + n+ 3 and |R1| = 3 + 3k + n+

∑
1≤i≤n(|Ai|+ |Bi|). Of course,

alternatively, objects a′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. We again
comment that, although this construction has no multiplicative effect, the num-
ber of copies of a symbol in V produced in the end of the simulation equals the
number of rules in S that have produced this symbol in the last step. Producing
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exactly one copy needs one more step, 2k+1 additional symbols in O and 3k+1
additional rules. We call this system Π8 and give no more details, since obtaining
it from Π7 is exactly like obtaining Π6 from Π5.

3.5 Using only inhibitors

First, as an exercise, we construct a P system for an R system S with triples
of symbols {(ai, bi, ci)} as rules. The initial configuration matches the initial
configuration of S, plus an additional object I1.

Π9 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′ | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I1} ∪ {di → ci|¬(bi)′ | 1 ≤ i ≤ n}
∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 | a ∈ V }.

This construction is obtained from the one with promoters and inhibitors,
implementing the group of rules with promoters (contrasted with existing rules
with the same objects as inhibitors) in the next step, inhibited by “timer” I2.
Moreover, removing objects a′ is delayed for one step, to make sure that the
rules inhibited by them in the second step are not applied in the third step.
Notice also that the simulation of a computation step of S only takes two steps
of computation in Π; the third step of computation cleaning objects di and a′

overlaps with the first step of simulation of the next step in S. However, this
produces no interference, since sub-alphabets {di | 1 ≤ i ≤ n}∪{a′ | a ∈ V } and
{I1} ∪ V are disjoint. We also note, similarly to Π1, that the number of objects
and rules can be decreased by not producing a′ when a participates in the left
side of any rule, and using dmin{j|1≤j≤n, aj=b} instead of b′ as promoter.

The problem of multiplicative effect can be solved in the usual way, resetting
multiplicities to one: produce one copy of each candidate-object, and erase the
objects where the multiplicity is zero. However, with inhibitors it takes longer:
one additional step to erase objects a when the corresponding object a′′ is absent,
and one further step to rewrite a into a.

Π10 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′, a′′, a | a ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},
R1 = {I1 → I2} ∪ {a→ a′

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {I2 → I3
∏

a∈V
a} ∪ {di → (ci)

′′|¬(bi)′ | 1 ≤ i ≤ n}

∪ {I3 → I4} ∪ {di → λ|¬I2 | 1 ≤ i ≤ n} ∪ {a′ → λ|¬I2 , a→ λ|¬a′′ | a ∈ V }
∪ {I4 → I1} ∪ {a→ a|¬I3 , a′′ → λ|¬I3 | a ∈ V }.
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Hence, the total additional price for resetting the multiplicities of elements
of V to one using only inhibitors is 2 more steps, 2k+ 2 additional objects, and
3k + 2 rules.

Now consider the general case of simulating an R system S with alphabet
V and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the
initial configuration which matches the initial configuration of S, plus additional
objects I1, J and b′ for each b ∈ V .

Π11 = (O,µ = [ ]1, w1, R1 = Ri ∪Rii ∪Riii) where

O = V ∪ {b′, b′′ | b ∈ V } ∪ {di | 1 ≤ i ≤ n} ∪ {I1, I2, I3, J},
Ri = {I1 → d1 · · · dnI2J} ∪ {b′ → b′′|¬b | b ∈ V } ∪ {J → λ},
Rii = {di → λ|¬a, di → λ|¬b′′ | a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n}
∪ {b′ → λ|¬I1 | b ∈ V } ∪ {I2 → I3, J → λ},

Riii = {di →
∏

c∈Ci

c|¬I2 | 1 ≤ i ≤ n}

∪ {a→ λ|¬J | a ∈ V } ∪ {b′′ → λ|¬I2 | b ∈ V } ∪ {I3 → I1J
∏

b∈V
b′}.

This construction is obtained from the second one with promoters and in-
hibitors, as follows. The role of objects b′ is to change into b′′ if and only if the
corresponding object b is present, so b′′ can be used as an inhibitor instead of
promoter b; objects b′ are recreated in the last step, for the next simulation cycle.
Moreover, to make sure the rules erasing di in the absence of a are not applied
in the third step, objects a can only be removed in the third step. This is why
an additional object J is present in each of the first two steps of the simulation,
inhibiting premature removal of objects a. The rule erasing J is written both in
Ri and Rii only to highlight that it is applied both in the first and in the second
step.

The system above needs only 3 steps to simulate a step of S, and if |V | = k,
then |O| = 3k + n+ 4 and |R1| = 4 + 4k + n+

∑
1≤i≤n(|Ai|+ |Bi|). Of course,

alternatively, objects b′ could be created from one additional initial object, at
a price of an additional step and a few extra rules, but we currently focus on
constructions that are efficient in time and descriptional complexity. Resetting
to one the multiplicities of objects in V can be done exactly how Π10 was con-
structed from Π9. Hence, the new system Π12 will have, compared to Π11, 2
more steps, 2k + 2 additional objects, and 3k + 2 rules.

4 Using antimatter

This section is devoted to a different control mechanism: matter-antimatter anni-
hilation rules are used instead of promoters and/or inhibitors. The weak priority
of annihilation rules over non-cooperative rules is assumed, which is the most
common variant of the antimatter model. First, we notice that erasing with a
promoter, say, d → λ|b, in the case the promoting object b is erased without
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being used anywhere else, and when the number of copies of d is bounded, can
be modeled by antimatter as follows:

– replace the promoting object b by anti-object d− of the promoted object, in
sufficient copies to erase all possible copies of promoted object d,

– add erasing rules for this anti-object d− to remove the copies of the anti-
objects which did not annihilate.

We now construct the P system equivalent to Π1 using antimatter.

Π13 = (O = V ∪ {di, d−i | 1 ≤ i ≤ n}, µ = [ ]
1
, w1, R1) where

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V }

∪ {did−i → λ, di → ci, d
−
i → λ | 1 ≤ i ≤ n}.

In each rule of the first group of R1, it is enough to produce a single copy of
d−i , because at most one di may be generated by the system in the same step,
since the rule uniquely determines its left side. The simulation only takes two
steps, and uses k + 2n objects and k + 3n rules.

This construction, too, has multiplicative effect. Resetting multiplicities to
one can be done by two-step annihilation. Say, we got some number (possibly
zero) of objects c′′, and we only want to know whether this number is positive.
Then we produce one copy of (c′′)− and rewrite it to c′ if it does not immediately
annihilate. One step later, we produce one copy of (c′)−, and rewrite it to c if it
does not immediately annihilate. As a result, c will appear if and only if (c′)−

did not annihilate, i.e., c′ did not appear one step before. But this happened if
and only if (c′′)− was annihilated, i.e., there was at least one copy of c′′ two steps
before. Performing this routine to objects in V of Π13, we obtain the following
system, using an additional starting object I1:

Π14 = (O,µ = [ ]
1
, w1, R1) where

O = V ∪ {a′, a′′, (a′)−, (a′′)− | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3, I4},

R1 = {a→
∏

1≤i≤n,bi=a
d−i

∏
1≤i≤n,ai=a

di | a ∈ V } ∪ {I1 → I2}

∪ {did−i → λ, di → (ci)
′′, d−i → λ | 1 ≤ i ≤ n} ∪ {I2 → I3

∏
a∈V

(a′′)−}

∪ {a′′(a′′)− → λ, (a′′)− → a′ | a ∈ V } ∪ {I3 → I4}
∪ {a′(a′)− → λ, (a′)− → a | a ∈ V } ∪ {I4 → I1}.

As you can see, resetting multiplicities with antimatter has a price of two
more steps, 4k + 4 additional objects and 4k + 4 additional rules.

Now consider the general case of simulating an R system S with alphabet
V and rules {(Ai, Bi, Ci) | 1 ≤ i ≤ n}. The simulating P system below has the

– 21 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

initial configuration which matches the initial configuration of S, plus additional
object I1.

Π15 = (O,µ = [ ]
1
, w1, R1 = Ri ∪Rii ∪Riii where

O = V ∪ {a′, (a′)−, a′′, | a ∈ V } ∪ {di, d−i | 1 ≤ i ≤ n} ∪ {I1, I2, I3},

Ri = {I1 → I2d1 · · · dn
∏

a∈V
a′} ∪ {a→ (a′)−a′′ | a ∈ V },

Rii = {a′(a′)− → λ, a′ → d−i , b
′′ → d−i , (a′)− → λ

| a ∈ Ai, b ∈ Bi, 1 ≤ i ≤ n} ∪ {I2 → I3},
Riii = {did−i → λ, di →

∏
c∈Ci

c, d−i → λ | 1 ≤ i ≤ n} ∪ {I3 → I1}.

Symbols from Ci are produced from di if and only if it is not annihilated,
i.e., neither a′ nor b′′ should produce d−i for any a ∈ Ai, b ∈ Bi. Since a′ is
annihilated if and only if a is present, and b′′ is not produced if and only if b is
absent, the simulation of an application of rule i of the R system happens if and
only if all symbols from the first set are present and all symbols from the second
set are absent. The simulation takes 3 steps, using the alphabet of 4k + 2n + 3
symbols and the set of 3k + 3n+ 3 +

∑
1≤i≤n(|Ai|+ |Bi|) rules.

This construction produces each symbol in multiplicity equal to the number
of rules of S that produced it, not carrying the multiplicative effect to the next
step. If needed, resetting multiplicities can also be done, which costs two more
steps, 4k+ 2 additional objects and 4k+ 2 additional rules. We call this system
Π16, and provide no more details since it is obtained from Π15 exactly as Π14

is obtained from Π13.

5 Non-standard P systems

Some difficulty of simulation of R systems by P systems arises from the differ-
ences in their standard derivation modes. We would like to discuss how varying
this may affect the problem.

First, if we consider P systems with sets instead of multisets, where produc-
tion of a symbol multiple times still yields a single copy of the result, then all
constructions in this paper still hold literally, i.e., no changes in the description
of these P systems are needed. However, some things may become simpler, e.g.,
in this case resetting multiplicities to one is done by the model, and does not
require additional time, symbol and rule complexity.

We note that, in a non-distributed case, P systems with sets of objects are no
longer universal, since the number of possible configuration is bounded by two to
the power of the cardinality of the alphabet. However, universality is not needed
to simulate R systems (which has also been shown in the case of deterministic
P systems with promoters and/or inhibitors).

Second, if we consider P systems which deterministically apply all individ-
ually applicable rules, even with overlapping left sides (i.e., competing for re-
sources), then of course the existing solutions still literally hold, but in some

– 22 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

cases there are much easier ways: we would have no need to explicitly produce
multiple objects from one. For instance, the constructions in this paper usually
involve production of rule labels di, either from the corresponding reactant ai, or
from some “timer” object Ij , and then have different rules processing these label
objects. In this “auto-replication” mode, these various processing rules could
be applied directly to the corresponding original object ai or Ij , the replication
being done by the model itself. This would definitely simplify the simulation.
Let us refer to this aspect as auto-replication. For example, the set of rules of
system Π1 can be simplified to the following:

{ai → ci|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V },

i.e., just one step, no additional objects and k additional rules. The problem
with resetting the multiplicities is also simpler:

Π = (O,µ = [ ]
1
, w1, R1 where

O = V ∪ {a′ | a ∈ V } ∪ {I1, I2},
R1 = {I1 → I2} ∪ {ai → (ci)

′|¬bi | 1 ≤ i ≤ n} ∪ {a→ λ | a ∈ V }
∪ {I2 → I1} ∪ {I2 → c|c′} ∪ {c′ → λ | c ∈ V },

i.e., requiring only one more step, k + 2 additional symbols and 2k + 2 ad-
ditional rules (compared to increase of complexity of Π2 over Π1 by one step,
2k + 3 symbols and by 3k + 3 rules).

Third, if we consider P systems where idle objects (i.e., those not consumed
by applied rules) do not contribute to the next configuration, we call this aspect
“no persistence”, then many erasing rules (in particular, all erasing promoted
or inhibited by some “timer” Ij) would no longer be needed, while occasionally
some renaming rules should be added when object was designed to be used later
than in the next step after its production. For instance, in case of no-persistence,
all n+k′ erasing rules of Π1 may be removed, leaving just n+k rules. Similarly,
all erasing rules of Π2 may be removed; hence, the subtask of resetting the
multiplicities to one in this case only needs k + 3 additional rules instead of
3k + 3.

However, testing for presence of some object b by “failing to apply a rule
with inhibitor b and finding the reactant unchanged in the next step” would not
work. The working solution is to use b as an inhibitor in a rule producing some
object b′, and to use b′ as an inhibitor in the next step. Testing for absence by
“failing to apply a rule with a promoter and finding the reactant unchanged in
the next step” would be no longer possible, so the model with promoters only
seems to be considerably weaker in the case without persistence of idle objects.

We would like to note that, in case of P systems with sets and auto-
replication, the aspect of no-persistence can be simulated as follows: add rules
a → λ for each a ∈ V ; they will make sure that such objects are not carried
over to the next step, in the same time not adding anything to the result (as
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for productive objects, erasing them is just another option, which in the auto-
replication case neither grows nor shrinks the set of objects obtained from them).
This simulation takes one step, k objects and n+ k rules.

And, of course, if we consider P systems with all these differences, i.e., with
sets, auto-replication, and without object persistence, then rule (a, b, c) of R
systems becomes identical to rule a→ c|¬b of P systems, while rule (A,B,C) of R
systems becomes identical to rule

∏
a∈A a→

∏
c∈C c|{¬b|b∈B}, so the simulation

is trivial, requiring one step, k objects and n rules of type (ncoo, pro1,∗+ inh∗,1).

6 Conclusions

We recall that although deterministic P systems with promoters and/or in-
hibitors are not universal and have subregular characterizations, their power
is sufficient to simulate R systems.

All constructions presented in this paper (except those in previous section)
simulate R systems (in their standard derivation mode) by P systems (in their
standard derivation mode), with the slowdown by a factor of constant, where
the descriptional complexity of the simulating P system is linear with respect
to the descriptional complexity of the simulated R system. The proportionality
constants vary depending on whether R systems are defined as triples of symbols
or as triples of sets of symbols, and on whether promoters, inhibitors or both are
used in P systems. All constructions are deterministic: while the multiset of rules
to be applied to a given configuration may not be unique, the next configuration
is unique. Indeed, in all these constructions, if two rules have the same left side,
then either their applicability is mutually exclusive (one is being promoted and
the other one is being inhibited by the same symbol), or also the right side is
the same (and thus, if there are multiple choices which object would promote or
inhibit the rule, such choice would not influence the result).

Seventeen constructions are presented, see Table 1: 0)(general and simple
in particular) P systems using single higher-weight promoters together with
multiple atomic inhibitors, 1)simple P systems using promoters and inhibitors,
2)simple P systems using promoters and inhibitors and resetting multiplicities
to one, 3)general P systems using promoters and inhibitors, 4)general P sys-
tems using promoters and inhibitors and resetting multiplicities to one, 5)simple
P systems using promoters, 6)simple P systems using promoters and resetting
multiplicities to one, 7)general P systems using promoters, 8)general P systems
using promoters and resetting multiplicities to one, 9)simple P systems using in-
hibitors, 10)simple P systems using inhibitors and resetting multiplicities to one,
11)general P systems using inhibitors, 12)general P systems using inhibitors and
resetting multiplicities to one, 13)simple P systems using antimatter, 14)sim-
ple P systems using antimatter and resetting multiplicities to one, 15)general P
systems using antimatter, 16)general P systems using antimatter and resetting
multiplicities to one. The table below shows the number of steps of simulating P
system to simulate one step of R system, alphabet size and the number of rules
in these simulations (n is the number of rules in S, k is the number of symbols
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P R mult features steps |O| |R1|
Π0 s L (ncoo, pro1,1 + inh1,1) 1 n+ k + 1 3n+ k + 1
Π0 G L (ncoo, pro1,∗ + inh∗,1) 1 n+ k + 1 2n+ k + 1 + T ′

Π1 s M (ncoo, pro1,1, inh1,1) 2 n+ k + k′ 2n+ k + k′

Π2 s 1 (ncoo, pro1,1, inh1,1) 3 n+ 3k + k′ + 3 2n+ 4k + k′ + 3
Π3 G L (ncoo, pro1,1, inh1,1) 3 n+ k + 3 n+ k + 3 + T
Π4 G 1 (ncoo, pro1,1, inh1,1) 4 n+ 3k + 4 n+ 4k + 4 + T

Π5 s M (ncoo, pro1,1) 3 n+ k + k′ + 3 2n+ k + k′ + 3
Π6 s 1 (ncoo, pro1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π7 G L (ncoo, pro1,1) 3 n+ 2k + 3 n+ 3k + 3 + T
Π8 G 1 (ncoo, pro1,1) 4 n+ 4k + 4 n+ 6k + 4 + T

Π9 s M (ncoo, inh1,1) 2 n+ k + k′ + 2 2n+ k + k′ + 2
Π10 s 1 (ncoo, inh1,1) 4 n+ 3k + k′ + 4 2n+ 4k + k′ + 4
Π11 G L (ncoo, inh1,1) 3 n+ 3k + 4 n+ 4k + 4 + T
Π12 G 1 (ncoo, inh1,1) 5 n+ 5k + 6 n+ 6k + 6 + T

Π13 s M (ncoo, antim/pri) 2 2n+ k 3n+ k
Π14 s 1 (ncoo, antim/pri) 4 2n+ 5k + 4 3n+ 5k + 4
Π15 G L (ncoo, antim/pri) 3 2n+ 4k + 3 3n+ 3k + 3 + T
Π16 G 1 (ncoo, antim/pri) 5 2n+ 8k + 5 3n+ 7k + 5 + T

Table 1. Comparative table of simulation of R systems by P systems

in S, k′ is the number of symbols that do not appear in the left side of any
rule of the simulated system; by T we denote

∑
1≤i≤k(|Ai|+ |Bi|) and by T ′ we

denote
∑

1≤i≤k |Bi|). Column R describes the type of simulated system, where s
stands for simple (rules with triples of symbols) and G stands for general (rules
with triples of sets). Column mult describes the multiplicities of symbols in the
simulating P system, where M stands for multiplicative effect, L stands for last
multiplicity, and 1 stands for multiplicities 0 and 1. Column features describes
the kinds of rules used.

Note: in Π6, Π8 and Π9, intermediate objects are removed one step later,
in parallel with the first step of simulation of the next step of evolution of the
simulated R system, but not interfering with it.

Finally, in the previous section we discussed how (qualitatively and quanti-
tatively) adopting some aspects of R systems (such as sets instead of multisets,
auto-replication or no-persistence) into the working model of P systems simplifies
simulation of R systems.
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Abstract. We further investigate the computing power of the recently
introduced P systems with Z-multisets (also known as hybrid sets) as
generative devices. These systems apply catalytic rules in the maximally
parallel way, even consuming absent non-catalysts, thus effectively gen-
erating vectors of arbitrary (not just non-negative) integers. The rules
may only be made inapplicable by dissolution rules. However, this re-
leases the catalysts into the immediately outer region, where new rules
might become applicable to them. We discuss the generative power of
this model. Finally, we consider the variant with mobile catalysts.

1 Introduction

Membrane systems (cell-like, with symbol objects) have traditionally been viewed
as collections of hierarchically arranged multiset processors, e.g., see [12]. In the
list of open problems disseminated in 2015, see [11], Gheorghe Păun suggested
to go beyond the traditional setting where symbol multiplicities in multisets are
restricted to non-negative integers. In [6] generalized multisets are defined as tak-
ing multiplicities from arbitrary finitely generated, totally ordered commutative
groups.

In [3], a different approach is taken: only catalytic rules are allowed, and
the applicability of a rule only depends on the presence of the corresponding
catalyst in the given region. Consuming an absent non-catalyst makes its mul-
tiplicity negative. While in [3] it was already established that such a model is
not universal, we found it interesting to investigate its generative power more
precisely.
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Since the number of catalysts remains finite and does not change throughout
the computation, this induces a finite set of “rule teams” which can be applied
in parallel in one step. The virtual absence of applicability conditions and the
finiteness of the “teams” hints at the possibility of seeing them as integer vectors;
in this case the P system itself can be seen as evolving by sequentially adding such
vectors (possibly having negative components) to the contents of its membranes.
In [2] this general model is compared with vector addition systems (see [5, 9] for
standard definitions; adapted to allow negative vector components in [8]) and
blind register machines, e.g., see [7].

Here we return to the particular model from [3], discussing the lower bound
of its generative power and giving some results on the variant with target indi-
cations.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [13] for a comprehensive introduction to both. We
only recall that multisets over the set of objects O can be seen as functions from
O into N; thus, the set of all multisets over O is NO (the set of all functions from
O to N). In membrane computing, the set of all multisets over O is commonly
denoted by O◦ = NO, while the multisets themselves are represented by strings
in O∗, keeping in mind that the order of symbols is not relevant.

2.1 Extending Multisets

To represent also negative multiplicities, multisets over a set of objects O have to
be extended to Z. A Z-multiset, allowing integer multiplicities (called a hybrid set
in [4]) then is from ZO; it can be represented by a string in (O∪O−)∗, whereO− =
{a− | a ∈ O} is a set of symbols that represents objects in multiplicity “negative
one”. Note that, as opposed to P systems with matter-antimatter [1], symbol a−

here is not an actual object, but simply a convenient way to represent a deficit
of a, and the actual multiplicity of a represented by a string w is |w|a − |w|a− .
We also do not distinguish between notations a−k and (a−)k. The superscript
− can be used as a morphism, producing a multiset with opposite multiplicities,
e.g., (ak)− represents the same Z-multiset as a−k. As the strings here are only
used to represent Z-multisets, we may write an equality sign between the strings
representing the same Z-multiset. For conciseness, let us use the notation O• =
(O ∪ O−)∗. Finally, since it will be always clear from the context, we may call
an element of O• “multiset”, omitting the word “representing”. Assuming an
order is fixed on O, for u ∈ O•, vector (|u|a − |u|a−)a∈O is denoted by ψO(u);
the subscript O may be omitted when it is clear from the context. This vector
is called the Parikh image of u.
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2.2 Linear Sets

The linear set generated by a set of vectors A = {ai | 1 ≤ i ≤ d} ⊂fin Zn (here
A ⊂fin B indicates that A is a finite subset of B) and an offset a0 ∈ Zn is
defined as follows:

〈A,a0〉N =

{
a0 +

∑d

i=1
kiai | ki ∈ N, 1 ≤ i ≤ d

}
.

If the offset a0 is the zero vector, we will call the corresponding linear set homo-
geneous; we also will use a short notation 〈A〉N = 〈A,0〉N.

We use the notation ZnLINN = {〈A,a0〉N | A ⊂fin Zn, a0 ∈ Z}, to refer to
the class of all linear sets. Semilinear sets are defined as finite unions of linear
sets. We use the notations ZnSLINN to refer to the classes of semilinear sets of
n-dimensional vectors. In case no restriction is imposed on the dimension, n is
replaced by ∗. We may omit n if n = 1. A finite union of linear sets which only
differ in the starting vectors is called uniform semilinear:

ZnSLINU
N =

{⋃
b∈B〈A,b〉N | A ⊂fin Zn, B ⊂fin Zn

}
Let us denote such a set by 〈A,B〉N.

Note that the uniform semilinear set can be 〈A,B〉N seen as a pairwise sum
of the finite set B and the homogeneous linear set 〈A〉N:

〈A,B〉N = {a + b | a ∈ 〈A〉N,b ∈ B}.

This observation immediately yields the conclusion that the sum of two uniform
semilinear sets 〈A1, B1〉N and 〈A2, B2〉N is uniform semilinear as well and can be
computed in the following way:

〈A1, B1〉N + 〈A2, B2〉N = {a + b1 + b2 | a ∈ 〈A1 ∪A2〉N,b1 ∈ B1,b2 ∈ B2}.

3 Purely Catalytic P Systems over Integers

In purely catalytic P systems over integers the set of objects is a disjoint union
of catalysts C and the regular objects O. The regular objects are allowed to
have any integer multiplicity, while the catalysts are only allowed to appear in
a non-negative number of copies.

The rules can be of the two following types:

– catalytic rules: cu→ cv, where c ∈ C and u, v ∈ O∗;
– catalytic rules with dissolution: cu → cvδ, where c ∈ C, u, v ∈ O∗, and
δ 6∈ C ∪O is the symbol indicating membrane dissolution.

The rules applied in parallel cannot involve more catalysts than available
in the system; the multiplicities of regular objects, on the other hand, do not
influence the applicability of rules. An application of a rule cu→ cv in a region
containing cw (c ∈ C, u, v ∈ O∗, w ∈ O• produces cw(cu)−cv = cwv(u−), or, in

– 29 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

terms of vectors, ignoring the catalyst, vector ψ(w) +ψ(v)−ψ(u) represents the
contents of that region after the rule has been applied. An application of a rule
cu→ cvδ produces the same effect, and then dissolves the enclosing membrane,
moving the contents of the dissolved membrane into the parent membrane.

Purely catalytic P systems over integers evolve under the maximally parallel
semantics, so each catalyst induces the application of exactly one rule (non-
deterministically chosen), unless the given region has no rules associated with
this catalyst. By ZdOZPm(pcatk, δ) we denote the family of sets of d-dimensional
vectors of integers generated by purely catalytic P systems over integers with
dissolution, at most m membranes and at most k catalysts. If any of parameters
d,m, k is unbounded, it is replaced by ∗ in this notation.

We also use notations for extended features (listed in parentheses in the
notation of the sets of Z-vectors generated by the corresponding families of P
systems). Target indications, denoted by tar, allow the non-catalysts to be sent
to a different membrane. In the right side of the rules, sending object a is written
by (a, tar), where tar ∈ {out} ∪ {inj | 1 ≤ j ≤ m}; j here is the label of an
immediately inner membrane. In this paper, we may write tarZ in the notation of
a set of Z-vectors generated by a family of P systems; this generalization reflects
the possibility to assign targets even to negative multiplicites of objects.

Another feature is mobile catalysts [10], i.e., targets may also be associated
to the catalysts, and thus the catalysts move across the membrane structure; we
denote this feature by mpcatk since the systems we consider are purely catalytic.
We use the plus sign between the features of catalytic mobility and dissolution
when it is allowed for the same rule to move a catalyst and to dissolve the
membrane currently containing it.

4 Results

4.1 Simplifications and Observations

First, we would like to explicitly allow rules of the form c→ cx, (c ∈ C, x ∈ O•),
i.e., the multiset of regular objects in the left side being empty. This does not
change the model, since any Z-multiset x can be written as u(v−), u, v ∈ O∗,
and, fixing some a ∈ O, c → cx is equivalent to cau → av. Moreover, any rule
cu→ cv is equivalent to c→ cu(v−), so it suffices to only consider rules of types
c→ cx and c→ cxδ (c ∈ C, x ∈ O•).

Second, we claim that it is enough to start with a single catalyst in every
region. To show that, we will consider that membrane i of the P system contains
the catalysts ci,k, 1 ≤ k ≤ ni, in the initial configuration. Now we will define
the sets Xi,k,j of right-hand sides of catalytic rules of membrane j involving the
catalysts initially located in membrane i:

Xi,k,j = {x ∈ O• ∪O•δ | (ci,k → ci,kx) ∈ Rj},

where Rj is the set of rules associated with membrane j. To simplify subsequent
explanations, we will adopt the following convention: If, for a given i and j, there
exists such a k that Xi,k,j 6= ∅, then we will replace all empty Xi,k′,j by {λ}.
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We remark now that the catalysts ci,k initially present in membrane i will
always stay together, because dissolution cannot separate them. We will replace
each such group (“band”) by a new catalyst having the combined effect of the
group. More formally, we will replace all the catalysts ci,k initially present in
membrane i by one new catalyst ci, and the rules associated with membrane j
by the following set:

R′j = {ci → cix1 · · ·xni
| xk ∈ Xi,k,j , 1 ≤ k ≤ ni, 1 ≤ i ≤ m}, 1 ≤ j ≤ m,

where m is the number of membranes of the membrane system. Note that R′j
contains rules for every catalyst ci representing the original “band” from mem-
brane i which may have an effect in region j.

The argument in the previous paragraph shows that we can replace multiple
catalysts in a region by a single one. On the other hand, having no catalyst
in some region is equivalent to having one catalyst with no associated rules.
Therefore, without restricting the generality, in the following we assume that in
the initial configuration of an arbitrary purely catalytic P system over integers,
each membrane region i, 1 ≤ i ≤ m, contains precisely one catalyst, and we can
call it ci.

Third, notice that the symbols may only travel from the inner membranes
to the outer ones, so if the output region i0 is not the skin, only the contents
of the membrane substructure inside i0 (including i0) is relevant for the result.
The only way in which a membrane i not contained within i0 could influence the
evolution of the system is by preventing it from halting. If i halts after i0, but
in a finite number of steps, then this only influences the moment when we are
allowed to retrieve the result, but not the result itself. If i never halts, then the
result of the system is always empty. If i may choose between halting in a finite
number of steps or never halting, then we can only consider those computations
in which it halts, and, as we have just shown, in this case it does not have any
influence on the result of the system.

According to this reasoning, the membranes not contained within the output
membrane i0 may influence the power of the system only trivially (by reducing
its result to the empty set). We will therefore assume that the output region is
always the skin.

Fourth, every elementary membrane having no rules associated to the cat-
alysts available there may be removed from the system without affecting the
result (unless it is the output membrane, in which case a singleton is generated,
which is a degenerate case), so in the following we assume that each elementary
membrane has some applicable rules. Clearly, the P system will not reach the
halting until this membrane is dissolved.

Consider this reasoning starting from the elementary membranes, by induc-
tion. Take any non-elementary membrane i which becomes elementary during a
computation. Assume i is not dissolved (i.e., it has no rules associated to any
of the catalysts that were placed within the membrane substructure inside i,
including i), but it is not the output membrane. Then all the computations in
the membrane substructure inside i, including i, do not contribute to the result,
and can be removed from the system without affecting the result.
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As a summary of the fourth observation, without restricting the generality
(except, possibly the degenerate cases generating the empty set or some sin-
gleton), we may assume that any purely catalytic P system over integers has
applicable rules associated to all elementary membranes, and all membranes
except the skin must be dissolved at some moment during the computation.

Finally, for every region except the skin, a catalyst ci without associated rules
is equivalent to a catalyst with a rule ci → ci. Hence, without restricting the
generality, we may assume that the catalysts are never idle before the halting is
reached. Clearly, (excluding the degenerate case generating the empty set), the
skin should have no rules associated to any catalyst of the system.

We would like to note that even without pruning the membrane structure by
removing membrane substructures not contributing to the result, the membrane
structure obtained at halting (if at all reachable) is unique.

We recall that in [2], the following generalization approach is taken: There is
a finite number of reachable membrane structures. These could be used as states
of a sequential P system, which may be obtained, separately for each membrane
structure, by combining the behavior of all catalysts in all regions of the P
system. Indeed, having fixed a reachable membrane structure, we know which
membranes have been dissolved, and thus the resulting location of each catalyst.
Then, for each catalyst, associated rules in its current location are considered
and combined, similarly to the second observation above, but globally. Having
obtained a sequential system, the catalyst is no longer needed. Then, in [2] it was
shown that such a generalization is nothing else but a sequential blind vector
addition system with states, and it was claimed that it characterizes precisely
the family of all semilinear vectors of integers.

Indeed, in this way any purely catalytic P system over integers can be sub-
stituted by a sequential blind vector addition system with states, so the upper
bound of the family of all semilinear sets of vectors of integers, or, equivalently,
the family of all integer vector sets, generated by blind register machines, holds.
However, the reverse is not necessarily true, i.e., it does not follow that for any
sequential blind vector addition system with states there would exist an equiv-
alent purely catalytic P system over integers.

In the present paper we investigate the particularities of how dissolution
affects the computation, and the lower bounds.

4.2 Generative Power

We recall that we discuss the family of integer vector sets generated by purely
catalytic P systems over integers, with the usual halting condition.

Since the output region cannot be dissolved by definition and any other ap-
plicable rule can never be stopped, single-membrane purely catalytic P systems
over integers are degenerate:

ZdOZP1(pcat∗, δ) = {∅} ∪ {{a} | a ∈ Zd}.
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For simplicity, we will not mention these degenerate cases while considering
multiple membranes.

With two membranes, a characterization is still straightforward:

ZdOZP2(pcat∗, δ) = ZdSLINU
N .

Indeed, let A be the finite set of vectors corresponding to the non-dissolving rules
in the elementary membranes, and let B be the finite set of sums of two vectors:
the one corresponding to the initial configuration and vectors corresponding to
the dissolving rules in the elementary membrane; the skin should have no rules.
If the catalyst in the elementary membrane is c2, then the correspondence men-
tioned above is c2 → c2x ↔ ψ(x), and similarly with dissolution. An arbitrary
computation of a P system consists of an arbitrary number of applications of
non-dissolving rules and one application of a dissolving rule. Hence, the resulting
vector sums up from the “initial” vector, one arbitrary “dissolving” vector, and
an arbitrary linear combination of “non-dissolving” vectors.

It is worth noting that, by a similar reasoning, for a P system with multiple
membranes, if the chronological order of dissolving membranes is fixed, the re-
sult is still ZdSLINU

N . Indeed, each combination of rules (one for each catalyst)
yields one vector, so all such possible combinations of non-dissolving rules yield
a finite set of vectors, and multiple non-dissolving steps yield a linear set gen-
erated by these vectors. Thus, over the whole computation the result sums up
from the initial configuration, a finite number of dissolution vectors, and a finite
number of linear sets corresponding to the membrane structures reached during
that computation. Since the total number of chronological orders of dissolving
membranes is bounded, the known result already follows:

ZdOZP∗(pcat∗, δ) ⊆ ZdSLINN.

Even with three membranes, in case two of them are elementary, the power of
such purely catalytic P systems over integers is still ZdSLINU

N , but for a different
reason: each elementary membrane contributes with its uniform semilinear set,
and a sum of two uniform semilinear sets is still uniform semilinear.

Let us now examine a P system with three nested membranes – the minimal
number to obtain a set which is not in ZdSLINU

N . Let the vector obtained
by joining the initial contents of all membranes be a, the set of non-dissolving
vectors of the elementary membrane be A3, the set of dissolving vectors of the
elementary membrane be B3, the sets of non-dissolving and dissolving vectors in
the middle membrane associated to catalyst c2 are A2 and B2, and the similar
sets associated to catalyst c3 (which will arrive from the elementary membrane)
are A and B. Let us see what the resulting vector set is built from, besides a.

A non-dissolving computation in three membranes adds at each step (an
element of) A3 to the elementary membrane and (an element of) A2 to the
middle membrane. Eventually all objects will arrive to the skin, so the three-
membrane phase of the computation will contribute by (an arbitrary element
of) 〈A2 +A3〉N.
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Then there are two possibilities. If membrane 2 is dissolved first, then the
system continues computing by only applying the rules in membrane 3, and even-
tually dissolving membrane 3, yielding B2 + 〈A3〉N +B3. However, if membrane
3 is dissolved first, then both catalysts are active in membrane 2, eventually dis-
solving it, yielding B3 + 〈A2 +A〉N + (B2 +A∪A2 +B ∪A+B). The expression
in parentheses corresponds to applying at least one dissolving rule. Therefore,
the set of integer vectors generated by such a purely catalytic P system over
integers with three nested membranes is

M = a+B3+〈A2+A3〉N+
(
B2+〈A3〉N ∪ 〈A2+A〉N+

(
B2+A ∪A2+B ∪B2+B

))
,

and the power of all three-membrane purely catalytic P systems over integers,
noting that the power of the nested case subsumes the power of the case with
two elementary membranes, is

ZdOZP3(pcat∗, δ) = {M | a ∈ Zd, A2, A3, B2, B3, A,B ∈ FIN(Zd)},

where M is the expression above. Unfortunately, it is not obvious what can be
simplified in it, except B3 can subsume a. So we try to analyze it in details,
possibly going into particular cases.

All terms in the expression M are bounded except three: 〈A3 +A2〉N, 〈A3〉N
and 〈A+A2〉N. These terms are not independent, even though A2, A3 and A are
three independent finite sets of vectors. It is, however, possible to separate them
in a particular case when |A3| = 1, choosing A2 = −A3 and A = C − A2. Since
A3 is a singleton, the identity A3 − A3 = {0} holds, so the three unbounded
terms become 〈{0}〉N, 〈A3〉N and 〈C〉N, so we are getting close to obtaining a
union of two particular linear (or even uniform semilinear) sets with different
base vectors.

Indeed, if we choose a = 0, B3 = {0}, B2 = {0}, B = {0} and A3 = {e},
expression M simplifies to 〈{e}〉N∪〈C〉N+(C+{e}∪{0}), which can be rewritten
as 〈{e}〉N ∪ 〈C〉N ∪ {e} 〈C〉N.

Alternatively, to avoid dealing with the union of three cases when membrane
2 is divided last, if we choose B2 = A2 and B = A, then the last parenthesis in
the general expression of set M becomes simply A2 + A = C. Choosing a = 0,
B3 = {0}, and A3 = {e}, expression M simplifies to 〈{e}〉N − {e} ∪ 〈C〉N + C.
Since 0 ∈ 〈{e}〉N − {e} and 〈C〉N + C ∪ {0} = 〈C〉N, in this case we can rewrite
M to

−{e} ∪ 〈{e}〉N ∪ 〈C〉N ,

which is a union of any two homogeneous linear sets, such that the first one has
only one generator, united with the opposite vector of that generator. Hence,

ZdOZPn(cat, δ) ) ZdSLINU
N , n ≥ 3.

What if B = ∅, i.e., catalyst c3 has no associated dissolution rules in region 2?
Then the general expression of set M is immediately simplified to

M = a +B2 +B3 + 〈A2 +A3〉N + (〈A3〉N ∪ 〈A2 +A〉N +A),
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and in our case of A3 = {e}, A2 = −{e} and A = C + {e}, M becomes

a +B2 +B3 + (〈{e}〉N ∪ 〈C〉N + C + {e}),

and choosing a +B2 +B3 = {−e}, and noticing that C 0 times is covered by e
0 times and 〈C〉N + C ∪ {0} = 〈C〉N, we simplify M to {−e} ∪ 〈{e}〉N ∪ 〈C〉N,
i.e., an “almost clean union” we already obtained before. Finally, we notice that
we can equivalently write it as

〈{e},−e〉N ∪ 〈C〉N .

Continuing the current approach with more membranes would only result in
more cases.

4.3 Communication

We would like to remark that adding target indications to the regular objects
should not increase the power of purely catalytic P systems over integers. Indeed,
looking at a purely catalytic P system over integers, it is easily decidable which
membranes will eventually be dissolved. Hence, the only question is whether the
contents of a region specified by target, after possible dissolutions, will be in the
output. There is no need to examine the future of a moved regular object, since
the resources in purely catalytic P systems over integers are unbounded, and we
can view this copy of a moved object as staying in that region until the end of
the computation.

However, if also the catalysts are allowed to have target indications associ-
ated, it does make a difference. We claim the following characterizations.

ZdOZP∗(mpcatk, tarZ) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcatk + δ) = ZdSLINN, k ≥ 1,
ZdOZP∗(mpcat∗, δ) = ZdSLINN,

The upper bound in either case is easy to see because the number of possible
arrangements of catalysts across the given membrane structure (and any possible
structures obtained from it by membrane dissolutions) is bounded. Hence, purely
catalytic P systems over integers with mobile catalysts are still not more powerful
than blind vector-addition systems with states, which characterize Z∗SLINN, see
[2]. We now proceed to ⊇ inclusions.

Consider an arbitrary semilinear set
⋃

1≤i≤m〈Ai,bi〉N, where for each i, 1 ≤
i ≤ m, Ai is a finite set, Ai ∪ {bi} ⊆ Zd. We construct the following purely
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catalytic P system over integers

Π1 = (O,C, µ,w1, · · · , w2m+1, R1, · · · , R2m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {c},
µ = [ [ [ ]

m+2
]
2
· · · [ [ ]

2m+1
]
m+1

]
1
,

w1 = c, wi+1 = λ, 1 ≥ i ≥ 2m,

R1 = {c→ (c, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},
Ri+1 = {c→ c(v, out) | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)}, 1 ≤ i ≤ m,

Rm+i+1 = ∅, 1 ≤ i ≤ m.

The work of Π1 consists of a non-deterministic choice of i-th linear set to gener-
ate, by moving catalyst c into membrane i+ 1 and producing bi. After sending
to the skin an arbitrary combination of vectors from Ai, the catalyst enters
membrane m+ i+ 1 and the system halts.

The system Π2 is obtained from Π1 by replacing the sets Ri+1 of rules,
1 ≤ i ≤ m, by

{c→ cv | ψ(v) ∈ Ai} ∪ {c→ (c, inm+i+1)δ}.

It works just as Π1, with one difference, Here, instead of sending v out (possibly
containing negative multiplicities), the linear combination of vectors from Ai

is generated directly in membrane i + 1, and is released into the skin upon
dissolution of membrane i+ 1, simultaneously with sending the catalyst into the
elementary membrane m+ i+ 1. Now consider the following purely catalytic P
system over integers.

Π3 = (O,C, µ,w1, · · · , w3m+1, R1, · · · , R3m+1, i0 = 1) where

O = {ai | 1 ≤ i ≤ d}, C = {ci | 1 ≤ i ≤ m+ 1},
µ = [ [ [ [ ]

2m+2
]
m+2

]
2
· · · [ [ [ ]

3m+1
]
2m+1

]
m+1

]
1
,

w1 = c1, wi+1 = λ, 1 ≤ i ≤ 2m,

w2m+1+i = c1+i, 1 ≥ i ≥ m,
R1 = {c1 → (c1, ini+1)vi | 1 ≤ i ≤ m, ψ(vi) = bi},

Ri+1 = {c1 → c1v | ψ(v) ∈ Ai}
∪ {c1 → (c1, inm+i+1), ci → ciδ}, 1 ≤ i ≤ m,

Rm+i+1 = {c1 → (c1, in2m+i+1), ci → (ci, out)}, 1 ≤ i ≤ m,
R2m+i+1 = {c1 → c1δ}, 1 ≤ i ≤ m.

The basic idea is the same, but the implementation is a little longer. To each
linear set i, 1 ≤ i ≤ n, three nested membranes are associated (i+ 1, m+ i+ 1
and 2m + i + 1). The beginning is just like in the case of Π2, until catalyst
c1 is sent into membrane m + i + 1, but membrane i + 1 is not dissolved yet.
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Then, c1 enters the elementary membrane 2m+ i+ 1 and dissolves it, releasing
catalyst ci+1 into the surrounding membrane m+i+1. Clearly, c1 cannot reenter
membrane 2m+ i+ 1, which no longer exists, so it has no applicable associated
rules. Catalyst ci, however, is sent out to membrane i+1, and dissolves it, which
releases all generated regular objects to the skin and halts the computation. This
proves the characterizations.

5 Conclusions

We have reproved that the power of purely catalytic P systems over integers
is contained in the family of all semilinear sets of vectors of integers. We then
have shown that with one membrane purely catalytic P systems over integers
give degenerate results, and with two membranes they are characterized exactly
by the family of all uniform semilinear sets of vectors of integers. With more
membranes, this equality becomes a strict inclusion, and a specific union of
linear sets with different base vectors have been obtained. More specifically, for
any vector e ∈ Zd and any finite set C ⊆ Zd, purely catalytic P systems over
integers can generate

〈{e},−e〉 ∪ 〈C〉N .

The most interesting open question remaining is whether Z∗OZP∗(pcat∗, δ) is
closed under union. While in almost all cases in membrane computing closure
under union is trivial, e.g., by making a non-deterministic choice in the first step
of the computation, the current situation is rather surprising.

Finally, we have considered the variants with mobile catalysts, and showed
a few combinations of features leading to characterizations of semilinear sets of
Z-vectors.
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membrane systems. In H. Jürgensen, J. Karhumäki, and A. Okhotin, editors,
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Abstract. In this paper we consider P systems working with multisets
with integer multiplicities. We focus on a model in which rule applicabil-
ity is not influenced by the contents of the membrane. We show that this
variant is closely related to blind register machines and integer vector
addition systems. Furthermore, we describe the computational power of
these models in terms of linear and semilinear sets of integer vectors.

1 Introduction

P systems have traditionally been viewed as hierarchical processors of multisets,
for instance, see [11]. In the list of open problems disseminated in 2015, see [10],
Gheorghe Păun suggested to go beyond the traditional setting and to consider
multisets in which objects are not restricted to have non-negative multiplicities.
Several possible approaches have been suggested since then, including the one
from [3], which defines generalised multisets as taking multiplicities from finitely
generated, totally ordered Abelian groups.

In [1], a different approach is taken. The objects of the P system are parti-
tioned into two classes: regular objects, which may have any integer multiplicity,
and “catalysts”, which may only appear in a bounded number of copies and
cannot be consumed without being immediately reproduced. Thus, the regular
objects cannot influence the applicability of rules, while the always bounded
catalysts induce a finite set of “rule teams” which can be applied in parallel in
one step. The virtual absence of applicability conditions and the finiteness of the
“teams” hints at the possibility of seeing them as integer vectors; in this case
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the P system itself can be seen as evolving by sequentially adding such vectors
to the contents of its membranes.

Even though this vision is quite reminiscent of the folklore vector addition
systems (VAS), this latter model is actually limited to having natural vectors as
configurations [2, 8]. On the other hand, P systems manipulating integer multi-
sets allow symbols with negative multiplicities to appear. It turns out that vector
addition systems without the limitation of having natural configurations (inte-
ger VAS) have received relatively little attention in the literature, for example,
see [7].

Another related model which has received notoriously little attention are
the blind register machines, whose registers are allowed to range over the whole
set of integers. Blind counter automata have been introduced and studied as
string recogniser devices by Sheila Greibach in [6]; their adaptation to recognising
vectors of integer numbers seems quite relevant to the study of multisets with
integer multiplicities.

In the present work we bring together the three models – P systems over
integer multisets as defined in [1], integer vector addition systems, and blind
register machines – and formally show the connections between their different
variants. We also give detailed characterisations of their computing power in
terms of linear and semilinear sets of natural and integer vectors.

The article is structured as follows. Section 2 recalls some notions used
throughout the paper, in particular semilinear sets and vector addition systems.
Section 3 gives a general definition of a register machine over a set A, and then
defines blind, partially blind, and conventional register machines within this gen-
eral framework. Section 4 defines the model of integer vector addition P systems
and gives some details as to their semantics. Section 5 investigates the power of
blind register machines and gives characterisations in terms of semilinear sets of
vectors. Finally, Section 6 studies the power of integer vector addition systems
with and without membranes, and compares different variants of the models
between themselves and with blind register machines.

2 Preliminaries

The reader is assumed to be familiar with the basic notions of formal languages
and membrane computing; see [12] for a comprehensive introduction to both.

We only recall the definition of multisets over a commutative monoid M , i.e.,
a commutative semi-group with unit element e:

Definition 1. An M-multiset over the (finite) alphabet O is a mapping w : O →
M. The value w(a) is called the multiplicity of a in w. An object a ∈ O is said
to appear in w if w(a) 6= e. A multiset w is said to be empty if no objects appear
in it, i.e., if w(a) = e for all a ∈ O.

For example, Z-multisets can be seen as vectors of integers, indexed by ele-
ments of O. For the empty Z-multiset over O all objects have multiplicity 0. We
will use the notation ZO to refer to the set of all Z-multisets over O.
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2.1 Linear Sets

The N-linear set of Z-vectors (or just linear set of Z-vectors) generated by a set
of vectors A = {a1, · · · ,ad} ⊂ Zn and an offset a0 ∈ Zn is defined as follows:

〈A,a0〉N =

{
a0 +

d∑
i=1

kiai

∣∣∣ ki ∈ N, 1 ≤ i ≤ d

}
.

We underline that the vectors are over Z, but the coefficients are from N (we will
also consider the special case when A ∪ {a0} ⊂ Nn; this then is an N-linear set
of N-vectors, or just a linear set, a well-known concept from Formal Language
Theory).

A Z-linear set of Z-vectors

〈A,a0〉Z =

{
a0 +

d∑
i=1

kiai | ki ∈ Z, 1 ≤ i ≤ d

}

can be considered, too. It corresponds precisely to the linear vector space notion
from the classic course of Linear Algebra. However, it is also a particular case.
Indeed, it is easy to see that 〈A,a0〉Z = 〈B,a0〉N for

B = {a1, · · · ,ad,−a1, · · · ,−ad}.

If the offset a0 is the zero vector, we call the corresponding linear set homo-
geneous.

A positive-restricted N-linear set of Z-vectors generated by A and an offset
a0 is as the N-linear set of Z-vectors generated by A, restricted to non-negative
vectors only:

〈A, a0〉+Z = {x ∈ 〈A, a0〉N | x ≥ 0} ,

where x ≥ 0 means that every component of x is non-negative.
We will use the notations ZnLINN, NnLINN, ZnLINZ, and Zn+LINN to

refer to the classes of all N-linear sets of Z-vectors, N-linear sets of N-vectors,
Z-linear sets of Z-vectors, and positive restricted N-linear sets of Z-vectors of
dimension n, correspondingly. Semilinear sets are defined as finite unions of
the corresponding types of linear sets. We will use the notations ZnSLINN,
NnSLINN, ZnSLINZ, and Zn+SLINN to refer to the families of N-semilinear sets
of Z-vectors, N-semilinear sets of N-vectors, Z-semilinear sets of Z-vectors, and
positive-restricted N-semilinear sets of Z-vectors of dimension n, respectively. In
case no particular restriction is imposed on the dimension, n will be replaced
by ∗. We may omit n if n = 1.

We recall the following general result from number theory known as Bézout’s
identity. Given a set of integers A = {a1, · · · , an} ⊂ Z, there exist integers
x1, · · · , xn ∈ Z such that the following holds:

n∑
i=1

xiai = gcd(a1, · · · , an),
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where gcd(a1, . . . , an) is the greatest common divisor of the integers from A.
Furthermore, the greatest common divisor is the smallest positive integer which
can be obtained as a (Z-)linear combination of the elements of A.

2.2 Vector Addition Systems

A vector addition system (VAS) of dimension n ∈ N is defined to be the pair
(w0,W ), where w0 ∈ Nn is the start vector, and W is a finite set of vectors from
Zn, called addition vectors. An addition vector w ∈ W is said to be applicable
to a vector x ∈ Nn if x + w ∈ Nn, i.e., if all the components of the vector x + w
are non-negative. A VAS evolves from the start vector w0 by sequentially adding
an applicable addition vector from W in each step.

A vector addition system with states (VASS) is a VAS equipped with a finite
state control. Essentially, state labels are assigned to addition vectors and a
graph of states is given which defines the possible sequences of application of
addition vectors.

We will use the notation VAS and VASS to refer to the families of sets of
natural vectors which can be generated by VAS and VASS, respectively.

It was shown in [8] that VASS are equivalent in expressive power to VAS
(without states): any n-dimensional VASS can be simulated by an (n + 3)-
dimensional VAS.

A variation of the model of vector addition systems consists in lifting the re-
striction that the valid vectors must have non-negative components. This model
has recently been defined in [7].

An integer vector addition system (Z-VAS) of dimension n ∈ N is the pair
(w0,W ), where w0 ∈ Zn is the start vector and W ⊆ Zn is finite set of addition
vectors. A Z-VAS evolves from w0 by sequentially applying the addition vectors
from W . The set of vectors generated by a Z-VAS is defined to be the set of
reachable vectors.

An integer vector addition system with states (Z-VASS) is a Z-VAS equipped
with a state control and is defined as a tuple (w0, Q, q0, qh, p, δ), where w0 ∈ Zn
is the start vector, Q is a finite set of state labels, q0 ∈ Q is the starting state,
qh ∈ Q is the halting state, p : Q \ {qh} → Zn is a function assigning a vector to
every state from Q\{qh}, and δ : Q→ 2Q is a state transition function assigning
to each state the set of possible successor states.

A Z-VASS starts in w0 and in state q0, applies the addition vector p(q0),
and non-deterministically moves into one of the states from δ(q0). This process
is iteratively repeated, until the halting state qh is reached. The vector language
generated by a Z-VASS is defined as the set of all vectors which are reachable
in the halting state qh.

We will use the notations Z-VAS and Z-VASS to refer to the sets of integer
vectors generated by Z-VAS or Z-VASS.
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3 Register Machines

Definition 2. A register machine over the set A is the tuple MA =
(n,A,Q, q0, qh, P ), where n ∈ N, A is a register alphabet, Q is a finite set of
state labels, q0 is the initial state, qh ∈ Q is the halting state, and P is a map-
ping associating an instruction to every state of MA. An instruction is a function
p : An → An × 2Q associating to every n-tuple of values from A another n-tuple
of such values and a set of states from Q. A configuration C ∈ Q × An of MA

is a tuple combining a state and n values from A.

MA can be seen as storing values of type A in its n registers. A configuration
of MA therefore defines its current state and the values of its n registers. When
in state q ∈ Q, MA can execute the instruction P (q), which will compute (1) new
values for all registers of MA and (2) a set of possible new states; MA can non-
deterministically make a transition into one of these states.

Definition 3. A k-step (finite) computation of the register machine MA =
(n,A,Q, q0, qh, P ) is a finite sequence of configurations (Ci)0≤i≤k such that,

1. C0 = (q0,a0), where some of the components of a0 (registers) may contain
input values;

2. Ck = (qh,ak), where some of the components of ak (registers) may contain
output values;

3. for every 0 ≤ i < k, Ci = (qi,ai), Cj = (qj ,aj), P (qi)(ai) = (aj , H), and
qj ∈ H.

MA therefore makes a transition from a configuration to another one by
sequentially applying its instructions. Whenever MA is in state qi, it retrieves the
corresponding instruction P (qi) and applies it to the tuple describing the values
of the registers. The result, P (qi)(ai), gives the new values for the registers and a
set of states H from which MA picks qj and moves into it. The last configuration
Ch is habitually referred to as the halting configuration.

Often, in order to be able to express the instructions in a sensible way, some
kind of structure over the set A is considered; one example of such a structure
may be a finitely generated Abelian group. Classical definitions of register ma-
chines rely on (sub)sets of integers and on the associated structure of a linearly
ordered finitely generated Abelian group.

In what follows, we describe the existing models of register machines using
the abstract language we have just introduced, and we show that blind register
machines actually represent the least restricted variant.

Definition 4. A blind register machine is a register machine B over the finitely
generated Abelian group (Z,+). The instructions of blind register machines can
be of the following two types:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB∗(i), q)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai − 1, . . . , an), {q}

)
.
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A computation of a blind register machine is defined as a computation of the
corresponding register machine over (Z,+).

Definition 5. A blind register machine accepts an input vector by resetting all
registers to zero in the halting configuration. A blind register machine generates
(or computes from an input) a vector of numbers by resetting all registers not
containing the output to zero.

We will use the notation PsZBRM (resp., PsNBRM) to refer to the class
of sets of vectors of integer (resp., natural) numbers accepted by blind register
machines.

All other well known types of register machines can be defined as subtypes
of blind register machines.

Definition 6. A partially blind register machine is a blind register machine
whose registers are only allowed to contain non-negative numbers: for any com-
putation (Ci)1≤i≤k of a partially-blind register machine and for any Ci = (qi,ai),
1 ≤ i ≤ k, every component of ai is non-negative.

Thus, if the partially blind register machine B′ decides at some point to
decrement a register whose value is already zero, it will produce an illegal con-
figuration which will render the whole computation invalid. This means that
B′ still cannot check its registers for zero, but it knows that all of them are
non-negative at any given time. The computations of partially blind machines
therefore satisfy a condition which renders them strictly stronger than blind
register machines [6]: the registers may never go below zero.

Definition 7. A partially blind register machine accepts an input vector by re-
setting all registers to zero in the halting configuration. A partially blind register
machine generates (or computes from an input) a vector of numbers by resetting
all registers not containing the output to zero in the halting configuration.

We will use the notation PsPBRM to refer to the class of sets of vectors of
natural numbers accepted by partially blind register machines.

We can now also define conventional register machines in our general frame-
work.

Definition 8. A (conventional) register machine is a register machine over
(Z,+) with the following two types of instructions:

1. (ADD(i), q, s)(a1, . . . , ai, . . . , an) =
(
(a1, . . . , ai + 1, . . . , an), {q, s}

)
, and

2. (SUB(i), q, z)(a1, . . . , ai, . . . , an) ={(
(a1, . . . , ai − 1, . . . , an), {q}

)
, if ai > 0,(

(a1, . . . , ai, . . . , an), {z}
)
, if ai = 0.

Computations of conventional register machines are defined as computations
of the corresponding register machines over (Z,+) with the restriction that, in
the initial configuration, all registers must contain non-negative values.
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It follows from the form of instructions allowed in conventional register ma-
chines that their registers contain non-negative values at any time. Therefore,
one can see such register machines as an even more powerful form of partially
blind register machines (and thus a particular case of blind register machines),
in which the machine is allowed to check whether any given register is zero.

We would like to remark that by considering other types of instructions or
restrictions on the class of valid computations, one can characterise many other
variants of register machines. For example, reversal-bounded counter automata
are register machines in which one can only switch from incrementing to decre-
menting a register (and conversely) a bounded number of times, for example,
see [9].

4 Integer Vector Addition P Systems

In [10], Gheorghe Păun suggested to explore multisets with negative multiplic-
ities. Several possible answers were suggested. In [3], the authors defined gen-
eralised multisets as having multiplicities from totally ordered Abelian groups.
In [1], a different approach is taken. The alphabet of objects is partitioned into
two categories: the regular objects, which may have any integer multiplicity, and
the so-called “catalysts”, which are only allowed to appear in a bounded number
of copies. Like in purely catalytic P systems, the “catalysts” in this model are
used to guide the applicability of rules.

In this work, we generalise this model to the concept of integer vector addition
P systems.

Definition 9. An integer vector addition P system (Z-VAPS) is a construct

Π = (O, T, µ, w1, . . . , wn, R, hi, ho),

where O is a finite alphabet of objects, T ⊆ O is the set of terminal objects, µ is
the membrane structure injectively labelled by the numbers from {1, . . . , n} and
usually given by a sequence of correctly nested brackets, wi are the Z-multisets
giving the initial contents of every membrane i, 1 ≤ i ≤ n, R is a finite set of
rules of the form r : {1, . . . , n} → ZO, and hi and ho are the labels of the input
and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Thus, integer vector addition P systems manipulate vectors of integers, in-
dexed by the objects from O (Z-multisets). A rule r ∈ R assigns such a vector to
every membrane of Π; applying r means adding (by componentwise addition)
the vector r(i) to the vector representing the contents of the membrane i, for
every 1 ≤ i ≤ n. Therefore, one may see r as only having a right-hand side and
as being unconditionally applicable. Such a form comes in naturally, since, as
also pointed out in [3, 1], considering multiplicities over Z renders the usual rule
applicability conditions irrelevant. We also remark that this way of defining the
rules generalises naturally to a tissue-like membrane structure, i.e., a membrane
structure which is not required to be a tree, but can be an arbitrary graph (for
instance, see [5]).
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We will use the tuple notation to describe rules of vector addition P systems –
a rule r will be given by the set

{
(i, r(i)) | 1 ≤ i ≤ n

}
. We will often omit those

tuples (i, r(i)) in which r(i) is empty.
In [1], the authors use a special symbol δ to command the dissolution of

the membrane in which it is produced. To allow for the same possibility in
vector addition P systems, we will define the rules as functions of the form
{1, . . . , n} → ZO∪{δ}, i.e., as functions assigning Z-multisets over O ∪ {δ} to
each membrane. If r(i)(δ) = 1 for the elementary membrane i, the application
of r will dissolve this membrane after having added the multiplicities of symbols
different from δ to its contents. We may even allow r(i)(δ) = k > 1, in which case
k successive membranes in the hierarchy will be dissolved. There are tow pos-
sible semantics for what happens the contents of the intermediary membranes:
either only the contents of the innermost dissolved membrane will be moved into
the corresponding parent membrane and the contents of the intermediary mem-
branes will be lost, or else the contents of the innermost dissolved membrane
as well as the contents of the intermediary membranes will be moved into the
corresponding parent membrane.

Allowing dissolution makes it possible to introduce a rule applicability con-
dition: r is applicable if every membrane i, for which r(i) is not empty,
is still present in the system.

The integer vector addition P system Π evolves by sequentially applying rules
from R until a halting configuration is reached. Remark that, because of the use
of Z-multisets, the only way to use the classical halting condition is to dissolve all
the membranes to which the rules of Π may contribute. This corresponds to the
approach proposed in [1] which consists in dissolving all the working membranes
until the result reaches a membrane without any rules. Thus, the classical halting
condition becomes somewhat degenerate; it is therefore only natural to discuss
other halting conditions, for example:

– unconditional halting – the system may halt at any moment, independently
of rule applicability or of the contents of the membranes;

– halting by zero – the system halts when it reaches a configuration in which
all multisets representing the contents of the still existing membranes are
empty.

Unconditional halting can be seen as corresponding to the way in which
the language generated by a grammar is defined [4]: essentially, the contents
of the output membrane of Π in any configuration Π can reach, projected on
the terminal alphabet T , is part of the vector language generated by Π. On
the other hand, halting by zero corresponds to the way in which blind register
machines recognise input vectors. From these two variants, in this paper we will
only consider unconditional halting.

We will use the notions uncond and inappl to refer to unconditional halting
and halting by inapplicability of rules. Similarly, we will use the symbols acc and
gen to refer to the accepting and generating modes. We will use the notation
PsZVAPS(m,h), m ∈ {acc, gen}, h ∈ {uncond, inappl}, to refer to the class
of sets of vectors of integers accepted or generated by integer vector addition

– 46 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

P systems working with the corresponding halting conditions. We will add the
symbol δ to refer to the vector languages associated with Z-VAPS with disso-
lution rules (PsZVAPS(m,h, δ)) and the symbol δ∗ to refer to the languages of
Z-VAPS which are allowed to dissolve multiple membranes at a time; in order to
distinguish between the possible two semantics for what happens if more than
one membrane is dissolved in one step from an inner membrane, we write δ∗ if the
the contents of the intermediary membranes will be lost (PsZVAPS(m,h, δ∗))
and δ′∗ if the contents of the intermediary membranes will be taken into the
parent membrane, too (PsZVAPS(m,h, δ′∗)). Finally, we will replace Z by N to
refer to the languages of vectors of natural numbers (non-negative integers).

We immediately observe that PsZVAPS(m, inappl) = {∅}, because if a Z-
VAPS has any rules at all, it can never halt by rule inapplicability.

5 On the Power of Blind Register Machines

In this section, we will focus on relating integer vector addition systems to blind
register machines, as well as on expressing the power of both models in terms
of semilinear vectors of numbers. We will show that blind register machines and
Z-VASS generate exactly N-linear sets of Z-vectors.

Also in [2], the computational power of blind and partially blind register
machines is discussed, but a different definition of blindness is used: a blind
register machine is defined as a partially blind register machine which may halt
with any values in the registers. In the present paper we use a definition which
is closer to Sheila Greibach’s blind and partially register machines as defined
in [6].

We will start by giving a proof of the quite intuitive result that blind register
machines recognise exactly the same sets of integer vectors as generated by
integer vector addition systems with states.

Theorem 1. PsZBRM = Z-VASS.

Proof. Take a blind register machine B = (n,Z, Q, q0, qh, P ); we will construct
a Z-VASS Γ = (w0, S, s0, sh, p, δ) with w0 = (0, . . . , 0) ∈ Zn, S = Q, s0 = qh,
sh = q0. The set δ(p) contains all the states of B from which p can be reached:

δ(s) = {q ∈ Q | P (q) = (SUB(i), s) or P (q) = (ADD(i), s, s′)
or P (q) = (ADD(i), s′, s)}.

The vector p(s) associated with a state s ∈ S does the opposite effect of the
instruction associated with the same state in B:

p(s) =

{
1i, if P (s) = (SUB(i), q),

−1i, if P (s) = (ADD(i), q, q′),

where 1i ∈ Zn is a vector whose only non-zero component is the i-th component.
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It follows from the construction of Γ that, for every computation of B ac-
cepting an input vector x, there exists a computation of Γ halting on the same
vector, and conversely, which proves that PsZBRM ⊆ Z-VASS.

To prove the converse inclusion, it suffices to take an arbitrary integer vec-
tor addition system, and to construct a blind register machine by reversing the
arrows in the state control graph of Z-VASS and by simulating the inverse ef-
fect of the addition vectors using multiple states. Thus, the machine will non-
deterministically and sequentially subtract addition vectors from an input vector
w and, at the end of the simulation, it will subtract w0. If this resets all registers
to zero, the machine has found an evolution of the simulated Z-VASS which
generates w. ut

The same construction can be used to show that partially blind register ma-
chine are equivalent in power to conventional vector addition systems with states.
Taking into consideration the result on the equivalence between (conventional)
VAS and VAS with states from [8], we formulate the following characterisation
of the power of partially blind register machines.

Theorem 2. PsPBRM = VASS = VAS.

We will now show that blind register machines do not recognise more than
N-semilinear sets of Z-vectors.

Lemma 1. PsZBRM ⊆ Z∗SLINN.

Proof. Consider a blind n-register machine B. At every step, B can increment or
decrement a register, independently of the contents of the registers. Consider the
alphabet of actions of B: AB = {ADD(i), SUB(i) | 1 ≤ i ≤ n}; every computa-
tion of B can be represented as a string over this alphabet. Let valid(AB) ⊆ A∗B
be the strings over A∗B which correspond to all computations of B. Pick such a
string w ∈ valid(AB). Since the actions do not depend on the contents of the
registers, any permutation of w which is in valid(AB) will have the same effect
as w. In particular, B will halt with the same values in its registers. Therefore,
the set of vectors B recognises can be described as follows:

N(B) =
{

(a1, . . . , an) | w ∈ valid(AB), ai = |w|SUB(i) − |w|ADD(i)

}
,

where |w|x is the number of copies of the symbol x ∈ AB in the string w.
Because B cannot read the values of its registers, the set valid(AB) is the

regular language given by the state control of B. Therefore, the Parikh image
Ps
(
valid(AB)

)
is an N-semilinear set. This means that N(B) is an N-semilinear

set of Z-vectors, and so is the set of vectors including only the values of the input
registers of B. Consequently, PsZBRM ⊆ Z∗SLINN, which is the statement of
the lemma. ut

We will now show that blind register machines can recognise all N-semilinear
sets of Z-vectors.

Lemma 2. PsZBRM ⊇ Z∗SLINN.
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Proof. Consider an N-semilinear set A of Z-vectors. There exists a finite collec-
tion of sets of generators Ai ⊆ Zn and offsets ai ∈ Zn such that A =

⋃
i〈Ai,ai〉Z.

Consider a blind register machine B which starts by non-deterministically choos-
ing a set of generators Ai and the corresponding offset ai. B then repeats the
following procedure until the set Ai is exhausted:

1. remove a generator a from Ai;
2. subtract a from the vector describing the registers of B a number of times

chosen non-deterministically.

At the end, B subtracts the vector ai from its registers. If B manages to reset all
its registers using this procedure, then, by construction, the input vector belongs
to 〈Ai,ai〉Z ⊆ A (and the computation of the machine gives a way to construct
this vector from Ai and ai). This implies the statement of the lemma. ut

It follows from Lemmas 1 and 2 that blind register machines recognise exactly
the N-semilinear sets of Z-vectors.

Theorem 3. PsZBRM = Z∗SLINN.

Consequently, if we only take the vectors of natural numbers recognised by
blind register machines, we obtain the positive-restricted N-semilinear sets of
Z-vectors.

Corollary 1. PsNBRM = Z∗+SLINN.

6 On the Power of Z-VA(P)S

In this section we will describe the power of integer vector addition (P) systems
in terms of semilinear sets of vectors and blind register machines. We will start
by pointing out that Z-VAPS without dissolution and with unconditional halting
generate exactly the sets reachable by Z-VAS.

Lemma 3. PsZVAPS(gen, uncond) = Z-VAS.

Proof. The effect of rules of Z-VAPS without dissolution does not depend on the
contents of the membranes. Consider the set of rules R of such a P system Π;
we will construct a Z-VAS Γ whose starting vector is the initial contents of
the output membrane ho of Π, and whose addition vectors are given by the
projection {r(ho) | r ∈ R}. Since Π can halt at any moment, its output is exactly
the set of reachable vectors of Γ . Therefore PsZVAPS(gen, uncond) ⊆ Z-VAS.

The converse inclusions follows from the fact that any Z-VAS can be seen as
a one-membrane Z-VAPS working with unconditional halting. ut

Because of the direct equivalence between Z-VAS and N-linear sets of Z-
vectors, we can write the previous result in the following way.

Theorem 4. PsZVAPS(gen, uncond) = Z∗LINN = Z-VAS.
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Allowing membrane dissolution together with halting by rule inapplicability
allows for generating any set from Z∗SLINN. An important feature for obtaining
this rather surprising result is the applicability condition for rules in an integer
vector addition P system Π which only allows rules to be applied if only still
existing membranes are to be affected.

Lemma 4. PsZVAPS(gen, inappl, δ) ⊇ Z∗SLINN.

Proof. Consider a family F of n Z-VAS, each of which generates a Z-linear set
of vectors of dimension d. We now construct an integer vector addition P system
Π with dissolution in the following way.

Π = (O, T, µ, w1, w2 . . . , wn+1, R, ho = 1),

where O = {ai | 1 ≤ i ≤ n} is a finite alphabet of objects ai for representing the
components of the d-dimensional vectors, T = O is the set of terminal objects,
µ = [1 [2 ]2 . . . [n+1 ]n+1]1 is the membrane structure with the skin membrane
containing n inner membranes, wi = λ, 1 ≤ i ≤ n + 1, i.e., every membrane is
empty at the beginning, and the output membrane is the skin membrane. R is
a finite set of rules simulating the n Z-VAS Vi = (ui, Ui), 1 ≤ i ≤ n, where ui is
the start vector of Vi and Ui is a finite set of vectors of dimension d:

R = R1 ∪R2,

R1 = {{(i+ 1, vi) | 1 ≤ i ≤ n} | vi ∈ Ui},

R2 = {{(i+ 1,uixi) | 1 ≤ i ≤ n} | xi ∈ {λ, δ}, 1 ≤ i ≤ n,
n∏
i=1

xi = 1}.

The rules in R1 simulate the i-th Z-VAS Vi in membrane i + 1, for all i,
1 ≤ i ≤ n, in parallel. At the end of the simulation, one rule in R2 is applied,
adding the corresponding start vectors, but also releasing exactly the result
representing a vector generated by one Vi into the skin membrane. After the
application of a rule from R2 the computation in Π halts, as all rules in R
require all membranes still to be present. Thus, Π generates the semilinear
language generated by the family F . ut

To prove the inverse inclusion, we will rely on Lemma 1, and we will even
allow multiple membrane dissolutions.

Lemma 5. PsZVAPS(gen, inappl, δ∗) ⊆ Z∗SLINN.

Proof (Sketch). Consider a Z-VAPS Π with multiple dissolution. We then con-
struct a blind register machine B which recognises the vector language generated
by Π in the following way. B has a group of working register per membrane of
Π which will represent the multiplicities of the symbols in this membrane. B
starts with the vector x in its input registers, and then simulates the applica-
tions of rules of Π in its working registers. Whenever Π dissolves a membrane
(or multiple membranes), B non-deterministically guesses the multiplicities of
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each symbol in the dissolved membrane and copies the guessed values into the
working registers representing the corresponding parent membrane. When all
inner membranes of the output membrane have been dissolved (B can encode
the information about the membrane structure in its state), B simultaneously
decrements the working registers representing the contents of the output mem-
brane and the input registers. If, earlier during the simulation, B has guessed
the value of a register in a wrong way, or, at the end of the simulation, the
values of the input registers and the working registers representing the output
membrane did not match, some registers of B will not be zero and the vector
x will be rejected. It follows from the construction that B accepts exactly the
vector generated by Π, which implies the statement of the theorem. ut

A similar argument holds if we replace δ∗ by δ′∗, i.e.,

PsZVAPS(gen, inappl, δ′∗) ⊆ Z∗SLINN.

Summarizing the preceding two lemmas and taking into account the obvious
inclusions

PsZVAPS(gen, inappl, δ) ⊆ PsZVAPS(gen, inappl, δ∗)

and

PsZVAPS(gen, inappl, δ) ⊆ PsZVAPS(gen, inappl, δ′∗)

we obtain the following result:

Theorem 5.

Z∗SLINN = PsZVAPS(gen, inappl, δ)

= PsZVAPS(gen, inappl, δ∗)

= PsZVAPS(gen, inappl, δ′∗).

We now consider a specific subclass of integer vector addition P systems with
(multiple dissolution) where the membrane structure is linear, and we denote the
corresponding classes by

PsZVAPlinS(gen, inappl, δ) and PsZVAPlinS(gen, inappl, δ∗).

When allowing multiple membrane dissolution in one rule, a linear membrane
structure is sufficient to again obtain Z∗SLIN .

Theorem 6. PsZVAPlinS(gen, inappl, δ∗) = Z∗SLINN.

Proof. Consider a family F of n Z-VAS, each of which generates a Z-linear set
of vectors of dimension d, i.e., we have n Z-VAS Vi = (ui, Ui), 1 ≤ i ≤ n, where
ui is the start vector of Vi and Ui is a finite set of vectors of dimension d. We
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now construct an integer vector addition P system Π with dissolution in the
following way.

Π = (O, T, µ, w1, w2 . . . , wn+1, R, ho = 1),

where O = {ai | 1 ≤ i ≤ n} is a finite alphabet of objects ai for representing
the components of the d-dimensional vectors, T = O is the set of terminal
objects, µ = [1 [2, . . . [n+1 ]n+1 . . . ]2 ]1 is the linear membrane structure of depth
n, wi = λ, 1 ≤ i ≤ n + 1, i.e., every membrane is empty at the beginning, and
the output membrane is the skin membrane. R is a finite set of rules simulating
the n Z-VAS Vi = (ui, Ui), 1 ≤ i ≤ n:

R = R1 ∪R2,

R1 = {{(i+ 1, vi) | 1 ≤ i ≤ n} | vi ∈ Ui},
R2 = {{(i+ 1,uixi) | 1 ≤ i ≤ n} | xi ∈ {λ, δi}, 1 ≤ i ≤ n,

card{xi | xi 6= λ, 1 ≤ i ≤ n} = 1}.

The rules in R1 simulate the i-th Z-VAS Vi in membrane i+1, for all i, 1 ≤ i ≤ n,
in parallel. At the end of the simulation, one rule in R2 is applied, adding the
corresponding start vectors, but also releasing exactly the result representing a
vector generated by one Vi into the skin membrane by going through all the
membranes in between down to the skin. After the application of a rule from
R2 the computation in Π halts, as all rules in R require all membranes still to
be present. Thus, Π generates the semilinear language generated by the family
F . ut

We now consider the special variant of families of Z-VAS which may only
differ in their start vectors. We will call such families uniform and will denote
the class of vector languages generated by such families by Z-VAS∪.

It turns out that this family Z-VAS∪ can be characterized by integer vector
addition P systems with only two membranes; we denote the corresponding class
by PsZVAP2S(gen, inappl, δ).

Theorem 7. PsZVAP2S(gen, inappl, δ) = Z-VAS∪.

Proof. First consider a finite family of Z-VAS F = {(ui, U) | 1 ≤ i ≤ n}. We now
define an integer vector addition P system Π generating the vectors reachable
by the systems from F in the following way. Π has two nested membranes, i.e.,
the membrane structure µ = [1 [2 ]2 ]1, and two groups of rules R1 and R2. As
in the previous proofs, the first group of rules applies the vectors from U to the
inner membrane. A rule of the second group finally adds one of the vectors ui
to the inner membrane and at the same moment dissolves it. By construction,
the vectors appearing in the halting configurations of Π are exactly the vectors
which can be reached by the Z-VAS from F , which proves the first inclusion.

For the other inclusion, consider an integer vector addition P system Π with
the membrane structure µ = [1 [2 ]2 ]1. In case the inner membrane is the output
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membrane, there must not be any applicable rule, thus, we can only generate a
singleton, i.e., the initial contents of the inner membrane. Hence, we now assume
that the skin membrane is the designated output membrane. In order to allow
the system to halt, there must not be a rule only involving the skin membrane.
If there is no rule dissolving the inner membrane, we either obtain the empty set
in case that there are applicable rules or else we again obtain a singleton result,
i.e., the initial contents of the skin membrane.

Finally, if at some moment we can apply a rule dissolving the inner mem-
brane, then we nearly have the same situation as in the first part of the proof.
The main difference is that we may also add a vector to the skin membrane
while adding another vector to the inner membrane. Yet as both the contents
of the inner membrane and the skin membrane finally will be merged, we can
immediately merge the results of the application of a rule in Π into a rule only
affecting the contents of the inner membrane, thus obtaining an equivalent in-
teger vector addition P system Π ′ which is exactly of the form of the integer
vector addition P system constructed in the first part of the proof, which yields
a set from Z-VAS∪. This observation completes the proof. ut

We now are going to show the interesting result that the class Z-VAS∪ is
strictly in between the classes Z-VAS and Z-VASS.

Lemma 6. Z-VAS ( Z-VAS∪.

Proof. The inclusion is trivial. Now consider two Z-VAS having the axioms (0, 0)
and (0, 1), and sharing the only addition vector (1, 1). The language of vectors
reachable by these two systems is L = {(a, a), (a, a+ 1) | a ∈ N}. Suppose there
exists a Z-VAS Γ generating the same vector language L. In order to generate all
pairs of natural numbers (a, a), it must start with the axiom (0, 0) and have an
addition vector of the form (1, 1). Then, in order to generate the pairs (a, a+ 1),
Γ needs to have an addition vector of the form (x, x + 1). However, applying
this addition vector twice yields the vector (2x, 2x + 2) /∈ L, which contradicts
the supposition and proves that the inclusion from the statement of the lemma
is strict. ut

The following lemma describes the relationship between Z-VAS∪ and Z-
VASS.

Lemma 7. Z-VAS∪ ( Z-VASS.

Proof. The work of a finite family F of Z-VAS can be simulated by a Z-VASS by
non-deterministically choosing a state in which one of the start vectors of F will
be added, and by subsequent direct simulation of the application of the shared
addition vectors.

Now consider the Z-VASS Γ with the starting vector (0, 0), which applies
the addition vector (0, 0) in the starting state q0 and then non-deterministically
chooses between q(1,0) and q(0,1). In q(1,0), Γ may apply the addition vector (1, 0)
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indefinitely, before entering qh. Similarly, in q(0,1), Γ may apply the addition vec-
tor (0, 1) indefinitely, before moving into qh. Thus, the vector language generated
by Γ is L = {(a, 0), (0, a) | a ∈ N}.

Suppose there exists a family of Z-VAS which generate the same language.
The shared addition vectors of this family therefore must include both (1, 0)
and (0, 1). But then, this family must also generate vectors in which both com-
ponents are non-zero and which therefore do not belong to L. This contradicts
our supposition and proves that the inclusion in the statement of the lemma is
strict. ut

The previous lemma also gives an example of a Z-semilinear set which cannot
be generated by uniform family of Z-VAS systems, which implies the following
result.

Corollary 2. Z-VAS∪ ( Z∗SLINN.

We now from Theorem 7, Lemma 6, and from the preceding Corollary 2 infer
the following result:

Theorem 8. Z∗LINN ( Z-VAS∪ = PsZVAP2S(gen, inappl, δ) ( Z∗SLINN.

7 Conclusion

In this paper we continued the investigation of P systems with multisets with
integer multiplicities, proposed in [10] and already studied in [3] and [1]. We
focused on the model originally described in [1] and generalised it to integer
vector addition P systems, in which the applicability of rules does not in any
way depend on the contents of the membranes. Interestingly enough, this P
system variant exhibits very strong connection with blind register machines and
integer vector addition systems – two models which have received little attention
in the scientific literature up to now.

We have studied a number of working modes and halting conditions for in-
teger vector addition P systems and have given exact characterisations of the
power of the corresponding variants in terms of linear and semilinear sets over Z
and over N. We have also pointed out a number of relations between the classes
of languages generated or accepted by this model.

Some non-trivial open questions are revealed by our research. One of them
concerns the semantics of multiple dissolution. In P systems, dissolution typically
concerns one membrane at a time; in the present paper we suggest considering
the possibility of dissolving multiple containing membranes in one step. One
of the semantics we propose discards the contents of the dissolved intermedi-
ary membranes, so only the multiset of the innermost dissolved membrane is
transferred to the corresponding parent membrane. Other semantics of multiple
dissolution may be possible and are certainly worth to be explored.

A very interesting open question concerns the types of semilinear sets. In
this paper we only deal with semilinear sets with generators and initial offsets
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from Nn and Zn, restricted to non-negative values or not. It is however pos-
sible to consider the generators, the offsets, and the coefficients to belong to
Nn or Zn, alternatively. This yields eight possibly different kinds of semilinear
sets, not including restrictions to non-negative values. Exploring the relations
between these kinds of semilinear sets may be useful in further refining certain
characterisations.

Finally, we point out that classical halting by inapplicability of rules is not
necessarily well adapted for dealing with generalisations of multisets to integers.
We have given examples of different halting conditions inspired by other models
of computing, but our list is far from being exhaustive and is definitely worth
to be extended.

References

1. O. Belingheri, A. E. Porreca, and C. Zandron. P systems with hybrid sets, 2016.
Workshop on Membrane Computing, submitted.
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Abstract. We consider P systems with derivation modes where rules
are only applied in at most one copy in each derivation step; especially
for the variant of the maximally parallel derivation mode we investigate
the case where each rule may only be used at most once. Moreover, we
also consider the derivation mode where from these sets of rules only
those are taken which have the maximal number of rules. We check the
computational completeness proofs of several variants of P systems and
show that some of them even literally still hold true for these two new set
derivation modes. Moreover, we establish two new results for P systems
using target selection for the rules to be chosen together with these two
new set derivation modes.

1 Introduction

Membrane systems with symbol objects are a theoretical framework of parallel
distributed multiset processing. Usually, multisets of rules are applied in parallel
to the objects in the underlying configuration; for example, in the maximally
parallel derivation mode (abbreviated max), a non-extendable multiset of rules
is applied to the current configuration. In this paper we now consider variants of
these derivation modes, where each rule is only used in at most one copy, i.e., we
consider sets of rules to be applied in parallel, for example, in the set-maximally
parallel derivation mode (abbreviated smax) we apply non-extendable sets of
rules, and in another derivation mode we apply sets of rules which contain a
maximal number of applicable rules (abbreviated maxrule).

Taking sets of rules instead of multisets is a quite natural restriction and
it arises from different motivations, e.g., firing a maximal set of transitions in
Petri Nets [5, 9] or optimizing an implementation of FPGA simulators [14]. A
natural question arises concerning the power of set-based modes in contrast to
multiset-based ones. The first attempt to go into this direction was done in [11]
where the derivation mode smax was called flat maximally parallel derivation
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mode. Yet we here keep the notation of the set-maximally parallel derivation
mode as we have already used it at the Conference on Membrane Computing
2015. In [11] it was shown that in some cases the computational completeness
results established for the max-mode also hold for the flat maximally parallel
derivation mode, i.e., for the smax -mode.

In this paper we continue this line of research and we show that for several
variants of P systems the proofs for computational completeness for max can
be taken over even literally for smax and eventually even for maxrule, but on
the other hand there are also variants of P systems where the derivation modes
smax and maxrule yield even stronger results than the max-mode. Full proofs
of the results established in this paper and a series of additional results can be
found in [4].

2 Variants of P Systems

In this section we recall the well-known definitions of several variants of P sys-
tems as well as some variants of derivation modes and also introduce the variants
of set derivation modes considered in the following.

A (cell-like) P system is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, fO, fI) where

– O is the alphabet of objects,
– C ⊂ O is the set of catalysts,
– µ is the membrane structure (with m membranes, labeled by 1 to m),
– w1, . . . , wm are multisets of objects present in the m regions of µ at the

beginning of a computation,
– R1, . . . , Rm are finite sets of rules, associated with the regions of µ,
– fO is the label of the membrane region from which the outputs are taken (in

the generative case),
– fI is the label of the membrane region where the inputs are put at the

beginning of a computation (in the accepting case).

fO = 0/fI = 0 indicates that the output/input is taken from the environ-
ment. If fO and fI indicate the same label, we only write f for both labels.

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. Catalytic rules are of the form ca → cv,
where c ∈ C is a special object which never evolves and never passes through a
membrane, it just assists object a to evolve to the multiset v.

In catalytic P systems we use non-cooperative as well as catalytic rules. In a
purely catalytic P system we only allow catalytic rules.

In the maximally parallel derivation mode (abbreviated by max), in any
computation step of Π we choose a multiset of rules from R (which is defined
as the union of the sets R1, . . . , Rm) in such a way that no further rule can be
added to it so that the obtained multiset would still be applicable to the existing
objects in the regions 1, . . . ,m.
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2.1 Set Derivation Modes

The basic set derivation mode is defined as the derivation mode where in each
derivation step at most one copy of each rule may be applied in parallel with
the other rules; this variant of a basic derivation mode corresponds to the asyn-
chronous mode with the restriction that only those multisets of rules are ap-
plicable which contain at most one copy of each rule, i.e., we consider sets of
rules:

Appl(Π,C, set) ={R ∈ Appl(Π,C, asyn) | |R|r ≤ 1 for each r ∈ R}

In the set-maximally parallel derivation mode (this derivation mode is ab-
breviated by smax for short), in any computation step of Π we choose a non-
extendable multiset R of rules from Appl(Π,C, set); following the notations elab-
orated in [8], we define the mode smax as follows:

Appl(Π,C, smax) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that R′ ⊃ R}

The smax-derivation mode corresponds to the min1-mode with the discrete
partitioning of rules (each rule forms its own partition), see [8].

As already introduced for multisets of rules in [6], we now consider the variant
where the maximal number of rules is chosen. The derivation mode maxrulesmax
is a special variant where only a maximal set of rules is allowed to be applied.
But it can also seen as the variant of the basic set mode where we just take a set
of applicable rules with the maximal number of rules in it, hence, we will also
call it the maxrule derivation mode. Formally we have:

Appl(Π,C,maxrule) ={R ∈ Appl(Π,C, set) | there is no R′ ∈ Appl(Π,C, set)
such that |R′| > |R|}

As usual, with all these variants of derivation modes as defined above, we
consider halting computations. We may generate or accept or even compute
functions or relations. The inputs/outputs may be multisets or strings, defined
in the well-known way.

For any derivation mode γ, γ ∈ {sequ, asyn,max, smax,maxrule, . . . }, the
families of number sets (Y = N) and Parikh sets (Y = Ps) Yγ,δ (Π), generated
(δ = gen) or accepted (δ = acc) by P systems with at most m membranes and
rules of type X, are denoted by Yγ,δOPm (X).

3 Catalytic and Purely Catalytic P Systems

We now investigate proofs elaborated for catalytic and purely catalytic P systems
working in the max-mode for the derivation modes smax and maxrule.
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3.1 Computational Completeness of Catalytic P Systems

We first check the construction for simulating a register machine M =
(d,B, l0, lh, R) by a catalytic P system Π, with m ≤ d being the number of
decrementable registers, elaborated in [2] for the max-mode, and argue why it
works for the derivation modes smax-mode and maxrule, too.

For all d registers, ni copies of the symbol oi are used to represent the value
ni in register i, 1 ≤ i ≤ d. For each of the m decrementable registers, we take
a catalyst ci and two specific symbols di, ei, 1 ≤ i ≤ m, for simulating SUB-
instructions on these registers. For every l ∈ B, we use pl, and also its variants
p̄l, p̂l, p̃l for l ∈ BSUB , where BSUB denotes the set of labels of SUB-instructions.

Π = (O,C, µ = [ ]1, w1 = c1 . . . cmd1 . . . dmp1w0, R1, f = 1),
O = C ∪D ∪ E ∪Σ
∪ {#} ∪ {pl | l ∈ B} ∪ {p̄l, p̂l, p̃l | l ∈ BSUB},

C = {ci | 1 ≤ i ≤ m},
D = {di | 1 ≤ i ≤ m},
E = {ei | 1 ≤ i ≤ m},
Σ = {oi | 1 ≤ i ≤ d},
R1 = {pj → orpkDm, pj → orplDm | j : (ADD(r), k, l) ∈ R}
∪ {pj → p̂jerDm,r, pj → p̄jDm,r, p̂j → p̃jD

′
m,r,

p̄j → pkDm, p̃j → pkDm | j : (SUB(r), k, l) ∈ R}
∪ {cror → crdr, crdr → cr, cr⊕m1er → cr⊕m1 | 1 ≤ r ≤ m},
∪ {dr → #, crer → cr# | 1 ≤ r ≤ m}
∪ {#→ #}.

Here r⊕m1 for r < m simply is r+1, whereas for r = m we define m⊕m1 = 1;
w0 stands for additional input present at the beginning.

Usually, every catalyst ci, i ∈ {1, . . . ,m}, is kept busy with the symbol di
using the rule cidi → ci, as otherwise the symbols di would have to be trapped by
the rule di → #, and the trap rule #→ # then enforces an infinite non-halting
computation.

In the derivation modes smax-mode and maxrule only one trap rule #→ #
will be carried out, but this is the only difference!

Only during the simulation of SUB-instructions on register r the correspond-
ing catalyst cr is left free for decrementing or for zero-checking in the second
step of the simulation, and in the decrement case both cr and its “coupled”
catalyst cr⊕m1 are needed to be free for specific actions in the third step of the
simulation.

For the simulation of instructions, we use:

Dm =
∏
i∈[1..m] di,

Dm,r =
∏
i∈[1..m]\{r} di,

D′m,r =
∏
i∈[1..m]\{r,r⊕m1} di.

The HALT-instruction labeled lh is simply simulated by not introducing the
corresponding state symbol plh , i.e., replacing it by λ, in all rules defined in R1.
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Each ADD-instruction j : (ADD(r), k, l), for r ∈ {1, . . . , d}, can easily be
simulated by the rules pj → orpkDm and pj → orplDm; in parallel, the rules
cidi → ci, 1 ≤ i ≤ m, have to be carried out, as otherwise the symbols di would
have to be trapped by the rules di → #.

Each SUB-instruction j : (SUB(r), k, l), is simulated as shown in the table
listed below (the rules in brackets [ and ] are those to be carried out in case of
a wrong choice):

Simulation of the SUB-instruction j : (SUB(r), k, l) if
register r is not empty register r is empty
pj → p̂jerDm,r pj → p̄jDm,r

cror → crdr [crer → cr#] cr should stay idle
p̂j → p̃jD

′
m,r p̄j → pkDm

crdr → cr [dr → #] [dr → #]
p̃j → pkDm

cr⊕m1er → cr⊕m1

In the first step of the simulation of each instruction (ADD-instruction, SUB-
instruction, and even HALT-instruction) due to the introduction of Dm in the
previous step (we also start with that in the initial configuration) every catalyst
cr is kept busy by the corresponding symbol dr, 1 ≤ r ≤ m.

Based on the construction elaborated in [2] and recalled above in sum we
have obtained the following result:

Theorem 1. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a catalytic P system

Π = (O,C, µ = [ ]1, w1, R1, f = 1)

working in one of the derivation modes max, smax or maxrule and simulating
the computations of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 5×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.

3.2 Computational Completeness of Purely Catalytic P Systems

For the purely catalytic case, one additional catalyst cm+1 is needed to be used
with all the non-cooperative rules. Unfortunately, in this case a slightly more
complicated simulation of SUB-instructions is needed, a result established in
[13], where for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 5×m+ 1,
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and for purely for catalytic P systems

|R1| ≤ 2×ADD1(R) + 3×ADD2(R) + 6× SUB(R) + 6×m+ 1,

is shown. Yet also this proof literally works for the derivation modes smax and
maxrule as well, with the only exception that the trap rule # → # is carried
out at most once.

3.3 Computational Completeness of (Purely) Catalytic P Systems
with Additional Control Mechanisms

In this subsection we mention results for (purely) catalytic P systems with ad-
ditional control mechanisms, in that way reaching computational completeness
with only one (two) catalyst(s).

P Systems with Label Selection For all the variants of P systems of type
X, we may consider to label all the rules in the sets R1, . . . , Rm in a one-to-
one manner by labels from a set H and to take a set W containing subsets
of H. In any transition step of a P system with label selection Π we first se-
lect a set of labels U ∈ W and then apply a non-empty multiset R of rules
such that all the labels of these rules in R are in U in the maximally par-
allel way. The families of sets Yγ,δ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc}, and
γ ∈ {sequ, asyn,max, smax,maxrule, . . . }, computed by P systems with la-
bel selection with at most m membranes and rules of type X is denoted by
Yγ,δOPm (X, ls).

Theorem 2. Yγ,δOP1 (cat1, ls) = Yγ,δOP1 (pcat2, ls) = Y RE for any Y ∈
{N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax,maxrule}.

The proof given in [7] for the maximally parallel mode max can be taken over
for the derivation modes smax and maxrule word by word; the only difference
is that in non-successful computations where more than one trap symbol # has
been generated, the trap rule #→ # is only applied once.

Controlled P Systems and Time-Varying P Systems Another method to
control the application of the labeled rules is to use control languages (see [10]
and [3]). In a controlled P system Π, in addition we use a set H of labels for the
rules in Π, and a string language L over 2H (each subset of H represents an ele-
ment of the alphabet for L) from a family FL. Every successful computation in
Π has to follow a control word U1 . . . Un ∈ L: in transition step i, only rules with
labels in Ui are allowed to be applied (in the underlying derivation mode, for
example, max or smax), and after the n-th transition, the computation halts; we
may relax this end condition, i.e., we may stop after the i-th transition for any
i ≤ n, and then we speak of weakly controlled P systems. If L = (U1 . . . Up)

∗
, Π

is called a (weakly) time-varying P system: in the computation step pn+i, n ≥ 0,
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rules from the set Ui have to be applied; p is called the period. The family of sets
Yγ,δ (Π), Y ∈ {N,Ps}, computed by (weakly) controlled P systems and (weakly)
time-varying P systems with period p, with at most m membranes and rules of
type X as well as control languages in FL is denoted by Yγ,δOPm (X,C (FL))
(Yγ,δOPm (X,wC (FL))) and Yγ,δOPm (X,TVp) (Yγ,δOPm (X,wTVp)), respec-
tively, for δ ∈ {gen, acc} and γ ∈ {sequ, asyn,max, smax,maxrule, . . . }.

Theorem 3. Yγ,δOP1 (cat1, αTV6) = Yγ,δOP1 (pcat2, αTV6) = Y RE, for any
α ∈ {λ,w}, Y ∈ {N,Ps}, δ ∈ {gen, acc}, and γ ∈ {max, smax,maxrule}.

The proof given in [7] for the maximally parallel mode max again can be
taken over for the derivation modes smax and maxrule word by word, e.g.,
see [4].

4 P Systems with Toxic Objects

In many variants of (catalytic) P systems, for proving computational complete-
ness it is common to introduce a trap symbol # for the case that the derivation
goes the wrong way as well as the rule #→ # (or c#→ c# with a catalyst c)
guaranteeing that the derivation will never halt. Yet most of these rules can be
avoided if we specify a specific subset of toxic objects Otox.

The P system with toxic objects is only allowed to continue a computation
from a configuration C by using an applicable multiset of rules covering all copies
of objects from Otox occurring in C; moreover, if there exists no multiset of
applicable rules covering all toxic objects, the whole computation having yielded
the configuration C is abandoned, i.e., no results can be obtained from this
computation.

For any variant of P systems, we add the set of toxic objects Otox and
in the specification of the families of sets of (vectors of) numbers generated
by P systems with toxic objects using rules of type X we add the subscript
tox to O, thus obtaining the families Yγ,genOtoxPm (X), for any m ≥ 1,
γ ∈ {sequ, asyn,max, smax,maxrule}, and Y ∈ {N,Ps}.

The following theorem stated in [1] only for the max-mode obviously holds
for the smax-mode, too.

Theorem 4. For β ∈ {max, smax},

PsRE = Psβ,genOtoxP1([p]cat2).

In general, we can formulate the following “metatheorem”:

Metatheorem: Whenever a proof has been established for the derivation mode
max and literally also holds true for the derivation mode smax, then omitting
trap rules by using the concept of toxic objects works for both derivation modes
in the same way.

In the following sections, we now turn our attention to models of P systems
where the derivation mode smax yields different, in fact, stronger results than
the derivation mode max.
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5 Atomic Promoters and Inhibtors

As shown in [12], P systems with non-cooperative rules and atomic inhibitors
are not computationally complete when the maximally parallel derivation mode
is used. P systems with non-cooperative rules and atomic promoters can at
least generate PsET0L. On the other hand, already in [11], the computational
completeness of P systems with non-cooperative rules and atomic promoters has
been shown. In the following we will establish a new proof for the simulation of
a register machine where the overall number of promoters only depends on the
number of decrementable registers of the register machine. Moreover, we also
show a new pretty surprising result, establishing computational completeness of
P systems with non-cooperative rules and atomic inhibitors, and the number
of inhibitors again only depends on the number of decrementable registers of
the simulated register machine. Finally, in both cases, if the register machine is
deterministic, then the P system is deterministic, too.

5.1 Atomic Promoters

We now establish our new proof for the computational completeness of P sys-
tems with non-cooperative rules and atomic promoters when using any of the
derivation modes smax and maxrule; the overall number of promoters only is
5m where m is the number of decrementable registers of the simulated register
machine.

Theorem 5. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

working in the smax- or maxrule-derivation mode and simulating the computa-
tions of M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 7×m,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number
of atomic inhibitors is 5m. Finally, if the register machine is deterministic, then
the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d; moreover, we denote BSUB = {p | p : (SUB(r), q, s) ∈ R}.

O = {or | 1 ≤ r ≤ d} ∪ {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p′′′ | p ∈ BSUB}

The symbols from {o′r, cr, c′r, c′′r , c′′′r | 1 ≤ r ≤ m} are used as promoters.
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An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p→ qor
and p→ sor.

A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′cr;
2. p′ → p′′c′r; or → o′r |cr , cr → λ;
3. p′′ → p′′′c′′′r , c′r → c′′r |o′r , o′r → λ;
4. p′′′ → q |c′′r , p′′′ → s |c′r , c′r → λ |c′′′r

, c′′r → λ, c′′′r → λ.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

5.2 Atomic Inhibitors

We now show that even P systems with non-cooperative rules and atomic pro-
moters using the derivation mode smax or maxrule can simulate any register
machine needing only 2m+1 inhibitors where m is the number of decrementable
registers of the simulated register machine.

Theorem 6. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with atomic
inhibitors

Π = (O,µ = [ ]1, w1 = l0, R1, f = 1)

a P system with atomic inhibitors Π = (O,µ = [ ]1, w1 = l0, R1, f = 1) working
in the smax- or maxrule-derivation mode and simulating the computations of
M such that

|R1| ≤ ADD1(R) + 2×ADD2(R) + 5× SUB(R) + 3×m+ 1,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R; moreover, the number
of atomic inhibitors is 2m+ 1. Finally, if the register machine is deterministic,
then the P system is deterministic, too.

Proof. The numbers of objects or represent the contents of the registers r, 1 ≤
r ≤ d. The symbols dr prevent the register symbols or, 1 ≤ r ≤ m, from evolving.

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ {dr | 0 ≤ r ≤ m}
∪ (B \ {lh}) ∪ {p′, p′′, p̃ | p ∈ BSUB}

We denote D =
∏m
i=1 di and Dr =

∏m
i=1,i6=r di.

An ADD-instruction p : (ADD(r), q, s) is simulated by the two rules p →
qorD and p→ sorD.

A SUB-instruction p : (SUB(r), q, s) is simulated in four steps as follows:

1. p→ p′Dr;
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2. p′ → p′′Dd0; in parallel, the following rules are used:
or → o′r |¬dr , dk → λ, 1 ≤ k ≤ m;

3. p′′ → p̃D |¬o′r ; o′r → λ, d0 → λ;
again, in parallel the rules dk → λ, 1 ≤ k ≤ m, are used;

4. p′′ → qD |¬d0 , p̃→ sD.

As final rule we could use lh → λ, yet we can omit this rule and replace every
appearance of lh in all rules as described above by λ. ut

6 P Systems with Target Selection

In P systems with target selection, all objects on the right-hand side of a
rule must have the same target, and in each derivation step, for each region
a (multi)set of rules – non-empty if possible – having the same target is chosen.
We show that for P systems with target selection in the derivation mode smax no
catalyst is needed any more, and with maxrule, we even obtain a deterministic
simulation of deterministic register machines.

Theorem 7. For any register machine M = (d,B, l0, lh, R), with m ≤ d be-
ing the number of decrementable registers, we can construct a P system with
non-cooperative rules working in the smax-derivation mode and simulating the
computations of M .

Proof. As usual, we take an arbitrary register machine M with d registers sat-
isfying the following conditions: the output registers are m+ 1, · · · , d, and they
are never decremented; moreover, registers 1, · · · ,m are empty in any reachable
halting configuration. Clearly, these conditions do not restrict the generality. We
construct the following P system Π simulating M .

By BADD we denote the set of labels for ADD-instructions, and by BSUB we
denote the set of labels for SUB-instructions of M . The value of each register r
is represented by the multiplicity of objects or in the skin.

The correct behavior of the object associated with the simulated instruction
of M is the following.

In the decrement case, we have inr+2, out, in2, idle, out, in2, here, out, here
(9 steps in total), whereas in the zero-test case, we have the same as before,
except that the fourth and the fifth steps are out and here instead of idle and
out, respectively.

In case of an increment instruction, we get here, here, here, here, in2, here,
out, here (8 steps in total). We remark that the first four steps are carried out
in the skin, while the last four steps repeat the cases of zero-test and decrement.

For every decrementable register r, there is a rule sending or into region r+2.
However, this rule may only be applied safely in the first step of the simulation
of the SUB-instruction, as otherwise some other object will also enter the same
region as # (either one of e, e′, e′′, ê, ê′, which we will in the following refer to
as the guards, or an object associated to the label of the simulated instruction,
which we will in the following call a program symbol) forcing an unproductive
computation, see the rules in brackets in the tables below.
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Π = (O,µ,w1, · · · , wm+2, R1, · · · , Rm+2) where

O = {or | 1 ≤ r ≤ d} ∪ {p̄, p | p ∈ B} ∪ {p′, p′′, p̂ | p ∈ BADD}
∪ {p′, p−, p′−, p0, p′0, p′′0 | p ∈ BSUB} ∪ {ē, e, e′, e′′, ê, ê′, d,#},

µ = [ [ ]
2
· · · [ ]

m+2
]
1
,

w1 = l0, w2 = e, wr+2 = λ, 1 ≤ r ≤ m,

R1 =

m+2⋃
i=1

(R1,i,s ∪R1,i,#),

Ri = Ri,1,s ∪Ri,1,# ∪Ri,i,s ∪Ri,i,#, 2 ≤ j ≤ m+ 2,

R1,1,s = {e→ e′, e′ → e′′, e′′ → ê, ê→ ê′, e′ → λ}
∪ {p′0 → p′′0 | p ∈ BSUB} ∪ {p̄→ p | p ∈ B}
∪ {p→ p̃or | p : (ADD(r), q, s) ∈ P}
∪ {p̃→ p′, p′ → p′′, p′′ → p̂ | p ∈ BADD},

R1,2,s = {p′ → (p−, in2), p′ → (p0, in2), p′− → (p′−, in2), p′′0 → (p′′0 , in2)

| p ∈ BSUB} ∪ {p̂→ (p̂, in2) | p ∈ BADD} ∪ {d→ (d, in2)}
R1,r+2,s = {or → (or, inr+2)} ∪ {p→ (p, inr+2)

| p : (SUB(r), q, s) ∈ P}, 1 ≤ r ≤ m,
R1,1,# = {p′ → #, p′′0 → #, p′− → # | p ∈ BSUB} ∪ {p̂→ # | p ∈ BADD}

∪ {#→ #},
R1,2,# = {p′0 → (#, in2), e′′ → (#, in2) | p ∈ BSUB}

∪ {p̄→ (#, in2) | p ∈ B},
R1,r+2,# = {x→ (#, inr+2} | x ∈ {e, e′, e′′, ê, ê′}

∪ {p′0, p′− | P ∈ BSUB} ∪ {p̄ | P ∈ B}}
∪ {p→ (#, inr+2) | p : (SUB(i), q, s) ∈ P, i 6= r}
∪ {p′ → (#, inr+2) | p ∈ BSUB}, 1 ≤ r ≤ m,

R2,1,s = {e→ (e, out)} ∪ {p̄→ (p̄, out) | p ∈ B}
∪ {p0 → (p′0, out), p− → (p′−, out) | p ∈ BSUB},

R2,2,s = {d→ λ, ē→ e} ∪ {| p ∈ B}
∪ {p′′0 → s̄ē, p′− → q̄ē | p : (SUB(r), q, s) ∈ P}
∪ {p̂→ q̄ē, p̂→ s̄ē | p : (ADD(r), q, s) ∈ P},

R2,1,# = {d→ (#, out),#→ (#, out)},
R2,2,# = {p0 → # | p ∈ BSUB} ∪ {p̄→ # | p ∈ B},

Rr+2,1,s = {p→ (p′, out) | p ∈ BSUB} ∪ {or → (d, out}, 1 ≤ r ≤ m
Rr+2,r+2,# = {#→ (#, out)}, Rr+1,r+1,s = Rr+1,r+1,# = ∅.

The “correct” target selection for the inner regions normally coincides with
that of the program symbol (described above) and no rule is applied there if
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the program symbol is not there, with the following exceptions. In the first step
of simulating an instruction, object e exits membrane 2, as it is the only rule
applicable there in this step. In the last step of simulating an instruction, object
ē is rewritten into e in membrane 2, as it is the only rule applicable there in this
step. In the fourth step of the decrement case, the program symbol is idle while
object d is erased. The “correct” target selection for the skin coincides with that
of the program symbol, and is here if the program symbol is missing in the skin.

(p : (SUB(r), q, s))

r + 2 1 2
1 - or → (or, inr+2) e→ (e, out)

- p→ (p, inr+2)
[p→ (#, ini+2), i 6= r]

2 p→ (p′, out) e→ e′ -
or → (d, out) [e→ (#, ini+2)]

3 - p′ → (p−, in2) -
p′ → (p0, in2)
d→ (d, in2)
[p′ → #]
[e′ → (#, ini+2)]

1,- 1,0 2,- 2,0
4 e′ → e′′ d→ λ p0 → (p′0, out)

[p− → (p′−, out)] [d→ (#, out)]
[p0 → #]

5 e′′ → ê p′0 → p′′0 p− → (p′−, out) -
[p′− → (p′−, in2)] e′′ → ê
[p′− → #] [p′0 → (#, int)]
[e′′ → (#, int)] [e′′ → (#, int)]
[for t > 1] [for t > 1]

6 p′− → (p′−, in2) p′′0 → (p′′0 , in2) -
[p′− → #] [p′′0 → #]
[p′− → (#, ini+2)] [p′′0 → (#, ini+2)]

7 ê→ ê′ p′− → q̄ē p′′0 → s̄ē
[ê→ (#, ini+2)]

8 ê′ → λ q̄ → (q̄, out) s̄→ (s̄, out)
[ê′ → (#, ini+2)] [q̄ → #] [s̄→ #]

9 q̄ → q s̄→ s ē→ e
[q̄ → (#, int)] [s̄→ (#, int)]

Most trapping rules, given in brackets in the tables and listed in rule groups
Ri,j,# above, are only needed to force the “correct” target selection. The ex-
ception are some rules in steps 4 and 5 of the simulation of SUB instructions,
needed for verifying that the decrement and the zero test have been performed
correctly (the guess is made at step 3 by the program symbol, and is reflected in
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its subscript). Indeed, if the zero-test is chosen while d is present (signifying that
the register was decremented), causing a target conflict: either p0 or d will be
anyway rewritten into #. However, if the decrement is chosen while d is absent
(signifying that the register was zero), then p− will appear in the skin in step
4 instead of step 5, causing a target conflict: either p′− or e′′ will be anyway
rewritten into #.

(p : (ADD(r), q, s))

1 2
1 p→ p̃or e→ (e, out)
2 p̃→ p′ -
e→ e′

3 p′ → p′′ -
e′ → e′′

4 p′′ → p̂ -
e′′ → ê

5 p̂→ (p̂, in2) -
[p̂→ #]

6 ê→ ê′ p̂→ x̄ē
7 ê′ → λ x̄→ (x̄, out)

[x̄→ #]
8 x̄→ x ē→ e

Auxiliary rules

r + 2 1 2
[#→ (#, out)] [#→ #] [#→ (#, out)]

Nearly half of the steps in the preceding constructions is needed for releasing
the auxiliary symbol e in the first step of a simulation from membrane 2, yet in
our construction, e and its derivatives are needed to control the correct target
selection in the skin membrane, and especially to keep the register objects or from
moving into membrane r + 2. Again we mention that any application of one of
the rules given in brackets in the tables above leads to non-halting computations,
not contributing to the result. ut

In contrast to the derivation mode maxrule where we take the maximal sets
of rules which are applicable, in the smax-derivation mode we may have several
non-extendable sets of rules which are applicable to the current configuration
although being of different sizes, which makes the proof much more difficult
than in the case of maxrule.

We now show that taking the maximal sets of rules which are applicable, the
simulation of SUB-instructions can even be carried out in a deterministic way.

Theorem 8. For any register machine M = (d,B, l0, lh, R), with m ≤ d being
the number of decrementable registers, we can construct a P system with non-
cooperative rules
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Π = (O,µ = [ [ ]2 . . . [ ]2m+1 ]1, w1, λ, . . . , λ,R1 . . . R2m+1, f = 1)

working in the maxrule-derivation mode and simulating the computations of M
such that

|R1| ≤ 1×ADD1(R) + 2×ADD2(R) + 4× SUB(R) + 10×m+ 3,

where ADD1(R) denotes the number of deterministic ADD-instructions in R,
ADD2(R) denotes the number of non-deterministic ADD-instructions in R, and
SUB(R) denotes the number of SUB-instructions in R.

Proof. The contents of the registers r, 1 ≤ r ≤ d is represented by the num-
bers of objects or, and for the decrementable registers we also use a copy of the
symbol o′r for each copy of the object or. This second copy o′r is needed during
the simulation of SUB-instructions to be able to distinguish between the decre-
ment and the zero test case. For each r, the two objects or and o′r can only be
affected by the rules or → (λ, inr+1) and o′r → (λ, inr+1) sending them into the
membrane r + 1 corresponding to membrane r (and at the same time erasing
them; in fact, we could also leave them in the membrane unaffected forever as
a garbage). These are already two rules, so any other combination of rules with
different targets has to contain at least three rules.

One of the main ideas of the proof construction is that in the skin membrane
the label p of an ADD-instruction is represented by the three objects p and
e, e′, and the label p of any SUB-instruction is represented by the eight objects

p, e, e′, e′′, dr, d
′
r, d̃r, d̃r

′
. Hence, for each p ∈ (B \ {lh}) we define R(p) = pee′ for

p ∈ BADD and R(p) = pee′e′′drd
′
rd̃rd̃r

′
for p ∈ BSUB as well as R(lh) = λ; as

initial multiset w1 in the skin membrane, we take R(l0).

O = {or | 1 ≤ r ≤ d} ∪ {o′r | 1 ≤ r ≤ m} ∪ (B \ {lh})

∪
{
dr, d

′
r, d̃r, d̃r

′
| 1 ≤ r ≤ m

}
∪ {e, e′, e′′}

An ADD-instruction p : (ADD(r), q, s) is simulated by the rules p→ R(q)or
and p→ R(s)or as well as the rules e→ λ and e′ → λ. This combination of three
rules supersedes any combination of rules or → (λ, inr+1) and o′r → (λ, inr+1),
for some 1 ≤ r ≤ m.

A SUB-instruction p : (SUB(r), q, s) is simulated in two steps as follows:

1. In R1, for the first step we take one of the following tuple of rules
p→ (p, inr+1), dr → (λ, inr+1), d′r → (λ, inr+1), d̃r → (λ, inr+1),
or → (λ, inr+1), o′r → (λ, inr+1);
p→ (p, inm+r+1), dr → (λ, inm+r+1), d′r → (λ, inm+r+1),

d̃r → (λ, inm+r+1), d̃r
′
→ (λ, inm+r+1);

the application of the rules or → (λ, inr+1), o′r → (λ, inr+1) in contrast to

the application of the rule d̃r
′
→ (λ, inm+r+1) determines whether the first
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or the second tuple of rules has to be chosen. Here it becomes clear why we
have to use the two register symbols or and o′r, as we have to guarantee that
the target r + 1 cannot be chosen if none of these symbols is present, as in
this case then only four rules could be chosen in contrast to the five rules
for the zero test case. On the other hand, if some of these symbols or and
o′r are present, then six rules are applicable superseding the five rules which
could be used for the zero test case.

2. In the second step, the following three or four rules, again superseding any
combination of rules or → (λ, inr+1) and o′r → (λ, inr+1) for some 1 ≤ r ≤
m, are used in the skin membrane:

e→ λ, e′ → λ, e′′ → λ, and in the decrement case also the rule d̃r
′
→ λ.

In the second step, we either find the the symbol p in membrane r + 1, if a
symbol or together with its copy o′r has been present for decrementing or in
membrane m+ r + 1, if no symbol or has been present (zero test case).
In the decrement case, the following rule is used in Rr+1: p→ (R(q), out).
In the zero test case, the following rule is used in Rm+r+1: p→ (R(s), out).

The simulation of the SUB-instructions works deterministically, hence, although
the P system itself is not deterministic syntactically, it works in a deterministic
way if the underlying register machine is deterministic. ut

7 Conclusion and Future Work

It is not very surprising that many of the computational completeness proofs
elaborated in the literature for the derivation mode max also work for the deriva-
tion modes smax and maxrule, as many constructions elaborated just “break
down” maximal parallelism to near sequentiality in order to work for the sim-
ulation of register machines. On the other hand, we also have shown that due
to this fact some variants of P systems become even stronger with the modes
smax and maxrule. A comprehensive overview of variants of P systems we have
already investigated can be found in [4], many more variants wait for future
research.
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Abstract. Cell biology provides useful ideas to computer scientists in
order to construct models which can provide more efficient computa-
tions. In this paper we prove that an abstract model of protein-protein
interaction derived from membrane computing has the same computa-
tional power as a Turing machine by using a rather small number of
proteins having at most length two, where length is an abstract measure
of complexity.

1 Introduction

Biological cells are complex systems composed of many components which are
themselves components in a large system of organs. The processes inside a cell
are integrated through a complex protein-protein network. It is widely known
the importance of proteins as active agents and targets in cellular biology. Mem-
brane proteins play critical roles in many biological and pathological processes,
and constitute the majority of all drug targets. During the last years, several
studies were devoted to protein-protein interaction networks and their role in
new therapeutic methods for numerous diseases.

Membrane proteins are often arranged in large complexes and are important
for many biological functions. For example, signals from the exterior of a cell
are mediated to the inside of that cell by protein-protein interactions of the
signalling molecules. Proteins might interact to form part of a protein complex,
a protein may be transporting another protein, or a protein may interact briefly
with another protein just to modify it. Such a (conformation) modification of
proteins can itself change protein-protein interactions. Most of the reactions
taking place in a cell are in fact controlled by proteins bound on cell membrane.
These proteins can be of two types: peripheral proteins (placed on the internal or
external side of a membrane), and integral proteins (have parts on both internal
and external sides of a membrane). Freely floating molecules interact with the
proteins bounded on membranes, and can be activated, manipulated, and pushed
across the cell membranes. According to [1], proteins constitute about 50% of
the mass of most animal cell membranes. The increasing complexity of protein-
protein interactions has driven the selection of longer proteins by the addition
of functional motifs. This increasing is an important evolutionary strategy for
achieving complex systems. In order to cope with the increased complexity of
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protein-protein interactions that arise within complex systems, protein lengths
are correlated with systems size [20].

The living cells provide useful ideas to theoretical computer scientists in order
to define models which can provide more efficient computations, models which
can be used by biologists. It is not about simply applying computer science
to biology, but by a systemic approach of the biological phenomena in terms of
computational inspiration in which the processing of information is essential [14].
According to [13], “Life is computation. Every single cell reads information from
a memory, rewrites it, receives data input (information about the state of its
environment), processes the data and acts according to the results of all this
computation. Globally, the zillions of cells populating the biosphere certainly
perform more computation steps per unit of time than all man made computers
put together”.

Membrane systems [18] represent such a class of computing devices inspired
by living cells which are complex hierarchical membrane structures with a flow
of materials and information which underlies their functioning, involving parallel
application of rules, communication between membranes and membrane dissolu-
tion. The structure of the cell is represented by a set of hierarchically embedded
regions, each delimited by a surrounding boundary (called membrane), and all
contained inside a so called “skin membrane”. A membrane without any other
membrane inside is said to be elementary, while a membrane with other mem-
branes inside is said to be non-elementary. Multisets of objects are distributed
inside these regions, and they can be modified or communicated between ad-
jacent compartments. Objects represent the formal counterpart of molecular
species (ions, proteins, etc.) floating inside cellular compartments, and multisets
of objects are described by means of strings over a given alphabet. Evolution
rules represent the formal counterpart of chemical reactions, and are given in the
form of rewriting rules which operate on the objects, as well as on the structure
by membrane influx, membrane efflux and elementary division.

A computation in membrane systems starts from an initial structure and the
system evolves by applying the rules in a nondeterministic and maximally par-
allel manner. The maximally parallel way of using the rules means that in each
step we apply a maximal multiset of rules such that no further rule can be added
to the multiset being applicable. A rule is applicable when all the objects that
appear on its left-hand side are available in the region where the rule is placed
(the objects are not used by other rules applied in the same step). Due to the
competition for available objects, some rules are applied nondeterministically. A
halting configuration is reached when no rule can be applied anymore; the result
is then given by the number of objects (in a specified region).

There are various models of computation (e.g., Turing machines) providing
different interpretations for the notion of algorithm. Turing computable functions
are the formalized analogue of the intuitive notion of algorithm. By considering
an abstract measure of complexity that we call length, we prove that protein
interaction networks using proteins of small lengths and acting according to
various biological inspired operations can simulate all computable functions.
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2 Protein-Protein Interaction Systems

The study of many complex biological systems has reached a stage where much
is known about the molecular components and their functional capacity and
interactions. A real challenge is how to integrate this wealth of information to
explain complex behaviours at various system levels [12]; cell polarity represents
one such example. Functional analysis of the proteins involved have uncovered
several subfunctions in the establishment and maintenance of cell polarity, in-
cluding GTPase signalling, exocytic deposition of membrane components and
cell wall materials, and endocytic recycling.

After presenting some technical notions, we define the protein-protein inter-
action systems. Their rules are applicable whenever there is a agreement between
membranes expressed by appropriate proteins, or protein complexes represented
by bonds between proteins, and co-proteins, or co-protein complexes, on their
surfaces. Let N be the set of non-negative integers, and consider a finite alpha-
bet V of proteins. A multiset over V is a mapping u : V → N. The empty
multiset is represented by ε. We use the string representation of multisets that
is widely used in the membrane protein systems; when a multiset is represented
by a string u, it means that every permutation of this string is allowed as a rep-
resentation of the multiset. An example of such a representation is u = aabaca,
where u(a) = 4, u(b) = 1, u(c) = 1. Using such a representation, the operations
over multisets are defined as operations over strings. Given two multisets u, v

over V , for any a ∈ V , we have (u ⊎ v)(a) = u(a) + v(a) as the multiset union,
and (u\v)(a) = max{0, u(a)− v(a)} as the multiset difference.

Consider an alphabet V = {ai, ai | 1 ≤ i ≤ n} in which if a denotes a
protein, then a denotes the corresponding co-protein. We denote by V ∗ the set
of all strings over V . V ∗ is a monoid with ε as its unit element (as strings are
used to denote multisets), and V + = V ∗\{ε}. For a string u ∈ V ∗, |u| denotes
the number of occurrences of symbols from V in the string u. By V ∼ = {a1 ∼
. . . ∼ an | a1, . . . , an ∈ V, n ≥ 1} we denote protein complexes, where proteins in
protein complexes of length greater than two are bonded. We use a1 ∼ . . . ∼ an
as a shorthand notation for a1 ∼ . . . ∼ an.

Protein-protein interaction systems represent a rule-based formalism involv-
ing parallelism and mobility introduced in order to model more specific biolog-
ical systems [5, 6]. The biologically inspired rules taken from the immune sys-
tem [16] and describing the mobility of membrane proteins inside the structure
are: pinocytosis (engulfing zero external membranes), phagocytosis (engulfing
just one external membrane), and exocytosis (expelling the content of a mem-
brane outside the membrane where it is placed). Pinocytosis and phagocytosis
represent different types of endocytosis. In these rules membranes agree on their
movement by using complementary objects a and a. Biologically speaking, the
objects a and their corresponding co-objects a fit properly.

Definition 1. A protein-protein interaction system with n membranes is a tuple
Π = (V, µ, u1, . . . , un, v1, . . . , vn, R), where

1. V is a finite (non-empty) alphabet of proteins;
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2. µ is a membrane hierarchical structure (i.e., a rooted tree) with n ≥ 2 mem-
branes; the membranes are bijectively mapped to {1, . . . , n};

3. u1, . . . , un are finite multisets of proteins (represented by strings over V )
bounded to the n membranes at the beginning of the evolution;

4. v1, . . . , vn are finite multisets of proteins (represented by strings over V )
placed inside the n membranes at the beginning of the evolution;

5. R is a finite set of rules of the following forms:
• [a]b → [ ]a∼b, for a ∈ V , b ∈ V ∼ (bondin)
• [ ]ba → [ ]b∼a, for a ∈ V , b ∈ V ∼ (bondout)
• u[v]a a → [[u′]cv

′]d, for a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d ∈ (V ∼)∗ (pino)
• [[u]av]a → u′[v′]c d, for a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d ∈ (V ∼)∗ (exo)
• [u]a[v]a → [[[u′]c]dv

′]b, for a, a ∈ V ∼, u, v, u′, v′ ∈ V ∗, c, d, b ∈ (V ∼)∗

(phago)

In rule (bondin), a bond is created between the protein labelled by a placed
inside a membrane and the protein labelled by b placed on the membrane, while
in rule (bondout), a bond is created between the protein labelled by a placed
outside a membrane and the protein labelled by b placed on the membrane. The
newly created protein complex has the length equal with the sum of lengths of a
and b, and is able to interact with other protein complexes.

In rule (pino), a protein complex labelled by a together with a complementary
protein complex labelled by a model the creation of an empty membrane within
the membrane on which a and a proteins are attached. The connection between
these proteins (a and a) is activated by the presence of the multisets of proteins u
and v. We should imagine that the original membrane protein receptor buckles
towards the inside, and pinches off by breaking the connection between a and a.
The multiset of proteins u′ inside the new created membrane is transferred from
outside the initial membrane. The proteins a and a, as well as the multisets u and
v, can be modified during this step to the multisets c, d, u′ and v′, respectively.
On the surface of the membrane appearing in the left hand side of the rule there
are some proteins (others than aa) which are ignored; these proteins are also not
specified on the right hand side of the rule, being randomly distributed between
the two resulting membranes. Graphically, this rule can be depicted as follows:

u v

aa

v′

d

u′

c

In rule (exo), a protein complex labelled by a together with a complementary
protein complex labelled by a model the merging of a nested membrane with
its surrounding membrane. The connection between these proteins (a and a) is
activated by the presence of the multisets of proteins u and v. We should imagine
that the connection between a and a represent the point where the membranes
connect each other. In this merging process (which is a smooth and continuous
process), the membrane having the protein a on its surface gets expelled to the
outside, and all proteins placed on the surface of the two membranes are united
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into a multiset on the membrane which initially contained a. The proteins a

and a, as well as the multisets u and v, can be modified during this step to
the multisets c, d, u′ and v′, respectively. If the membrane protein receptor
having on its surface the protein a is non-elementary, then its content is released
near the newly merged membrane after applying the rule. On the surface of the
membranes appearing in the left hand side of the rule there are some proteins
(others than a and a) which are ignored; these proteins are also not specified
on the right hand side of the rule, being moved by default on the resulting
membrane. Graphically, this process can be depicted as follows:

v′ u′

cd

v

a

u
a

In rule (phago), a protein complex labelled by a together with its comple-
mentary protein complex labelled by a model a membrane (the one with a on
its surface) “eating” an elementary membrane (the one with a on its surface).
The connection between these proteins (a and a) is activated by the presence of
the multisets of proteins u and v. The membrane having a on its surface wraps
around the membrane having a on its surface. An additional membrane is cre-
ated around the eaten membrane; the proteins a and a, as well as the multisets
u and v, can be modified during this step to the multisets b, c, d, u′ and v′,
respectively (the multiset c corresponds to a and remains on the eaten mem-
brane, while the multisets b and d correspond to a and are placed on the new
created membrane and the surrounding one). On the surface of the membranes
appearing in the left hand side of the rule there are some proteins (others than
a and a) which are ignored, and these proteins are also not specified on the right
hand side of the rule. The proteins appearing on the membrane having initially
the protein a on surface remain unchanged, while the proteins appearing on the
membrane having initially the protein a on surface are randomly distributed
between the two resulting membranes (the ones with d and b). Graphically, this
process can be depicted as follows:

u
a

v

a

v′

d
b

u′

c

Starting from an initial configuration of the newly defined protein-protein
interaction system (given by the initial membrane structure and multisets of
proteins), the evolution takes place by applying the rules activated by protein-
protein interactions. A rule is applicable when all the involved proteins and
membranes appearing in its left hand side are available. In each step a membrane
can be used in at most one rule (pino), (exo) or (phago). In this way the evolution
is parallel at the level of membranes. A halting configuration is reached when
no rule is applicable.
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3 Protein-Protein Interactions of the Immune System

The immune system is described well in [16], a book which is revised every few
years to keep the pace with the new discoveries in this field. The cells of the
immune system work together with different proteins to seek out and destroy
anything dangerous which enters our body. It takes some time for the immune
cell to be activated, but once this happens, there are very few hostile organisms
having a chance. Immune cells are white blood cells produced in huge quantities
in the bone marrow. There are a wide variety of immune cells, each of them
with its own utility and selectivity of the antigen. Some seek out and engulf the
invaders, while other destroy the infected or mutated body cells. Another type
of cells, namely the B cells, following the binding to the antigen, have the ability
to release special proteins called antibodies which mark intruders in order to be
destroyed by macrophages. The immune system has also the ability to produce
antibodies able to remember enemies which it fought in the past. In this way,
once the immune system recognizes an invader, it attacks more quickly and
strongly against it. Based on certain previous articles [3, 10], we illustrate here
how the protein interaction networks work against infections. The description
presented in [3] is based on the theoretical approach presented in [4] and [11].

Dendritic cells can engulf bacteria, viruses and other cells. Once a dendritic
cells engulfs a bacterium, it dissolves this bacterium and places portions of bac-
terium proteins on its surface. These surface markers serve as an alarm to other
immune cells, namely helper T cells, which then infer the form of the invader.
This mechanism makes sensitive the T cells to recognize the antigens or other
foreign agents which triggers a reaction from the immune system. Antigens are
often found on the surface of bacterium and viruses.

Fig. 1. Protection against infection [5]

In order to simulate the evolution presented in Figure 1, we need first to
encode all the component of the immune system into our model. This can be
realized by associating a membrane to each component, and some objects to the
signals, states and parts of molecules. For the steps done by the dendritic cells
presented in Figure 1, we use the following encodings:
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– dendritic cell: [eat]a1 a2 a3 l

An immature dendritic cell is willing to eat any bacterium it encounters,
so we translate it into a membrane which has inside an object eat used to
engulf the bacterium and some proteins bounded to the membrane a1, a2, a3
(these are used to recognize viruses) and l (used to enter the lymph node).
Once the dendritic cell matures, the object eat is consumed.

– bacterium cell: [antigen]a1

A bacterium cell contains antigen so we simply represent it as a membrane
containing a single object antigen which contains the information of the
bacterium and a protein a1.

– lymph node: [ ]l
The lymph node is the place where the mature dendritic cells migrate in
order to start the immune response, so we translate it into a membrane that
has bounded a protein l.

Using the above encodings, we can describe the whole system as follows:
[eat]a1 a2 a3 l[ ]l[antigen]a1 ,

together with the following rules describing its evolution:

* [eat]a1 [antigen]a1 → [eat[[antigen]a1]a1 ]a1

Once an immature dendritic cell becomes sibling to a bacterium, it “eats”
the bacterium by performing a phagocytosis rule. Until this moment the
bacterium has controlled its own movement; in this step of the evolution the
movement becomes controlled by the dendritic cell which eats the bacterium.

* [[antigen]a1]a1 → antigen[ ]a1

Once the bacterium has entered the dendritic cell, the content of the bac-
terium is released into the dendritic cell.

* [[ ]a1 ]a1 → [ ]a1

The remaining parts of the membrane used to engulf the bacterium is joined
with the membrane of the dendritic cell by a exocytosis rule.

* [antigen]l[ ]l → [[[antigen]l′]l′∼antigen]l
Once the dendritic cell contains parts of antigen, it enters the lymph node
in order to activate a special class of T cells, namely the helper T cells.

* [antigen]l′ → [ ]l′∼antigen

Once the dendritic cell enters the lymph node it displays on its surface the
antigen of the bacterium in order to be able to interact with T cells.

* [[eat]l′∼antigen]l′∼antigen → [ ]l′∼antigen

Once the dendritic cell enters the lymph node it matures and the capacity
to engulf bacteria disappear, namely the eat object is consumed.

Using only these rules, we can simulate the way a bacterium is engulfed and
its content is displayed by the eater cell. The proteins produced by helper T cells
activate the B cells. Using the proteins produced by helper T cells, the B cell
starts to divide and produce clones of itself. During this process, two new cell
types are created: plasma cells which produce an antibody, and memory cells
which are used to “remember” specific intruders.

This example motivates the introduction of the new class of membranes; more
exactly, it motivates the new rules and the way they can be used in modelling
some biological systems.
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4 Computational Power of Interaction Networks

Formal languages and automata theory [19] are usually used to introduce ab-
stract computing devices and investigating their computational power. Turing
machines represent a classical model of computation. Actually, a Turing machine
is a mathematical model that mechanically operates 0 and 1 symbols on an infi-
nite tape according to a table of three simple operations: go left, go right, change
symbol. Despite its simplicity, a Turing machine can simulate the logic of any
computer algorithm. According to Church-Turing thesis, computable functions
are exactly the functions that can be calculated using a Turing machine [21].

In this section we prove that protein-protein interaction networks can simu-
late all the computable functions by using a rather small number of components,
small proteins (having at most length two, meaning actually two components)
and operations inspired by membrane influx (pino, phago) and efflux (exo). The
rules (pino) and (phago) are used to increase the number of membranes, while
rule (exo) is used to decrease the number of membranes. Thus, we combine the
rules (pino) and (phago) with (exo) just to balance the number of membranes.
The result of a halting evolution consists of all the vectors describing the mul-
tiplicity of proteins inside and on all the membranes (a non-halting evolution
provides no output).

In what follows, we study the computational power of the pair (pino, exo) of
operations and prove its universality by using at most three membranes, while
the lengths of the membrane proteins in both (pino) and (exo) operations are
at most two. The number of three membranes represents the minimum number
with respect to the movement rules provided in our approach. In order to prove
this result, we construct a protein-protein interaction system with three nodes
(membranes) able to simulate any function computed by a Turing machine (i.e.,
computable functions). This computational power supports the possibility of
protein-protein interaction networks to describe algorithmically any normal and
abnormal biological evolution.

The basic results used for proving the computational power are described
in [15], where it was shown that any Turing machine can be simulated by a
register machine with only two registers. The actions of such register machine
can easily be simulated by matrix grammars with appearance checking.We define
the notions used in what follows. A matrix grammar with appearance checking
is a construct G = (N, T, S,M, F ) where N, T are disjoint alphabets of non-
terminals and terminals, S ∈ N is the axiom, M is a finite set of matrices
of the form mat = (A1 → x1, . . . , An → xn), Ai ∈ N , xi ∈ (N ∪ T )∗, 1 ≤
i ≤ n, of context-free rules, and F is a set of occurrences of rules in M . For
w, z ∈ (N ∪ T )∗, we write w ⇒mat z whenever (i) there is a matrix in M whose
rules can be applied in order to obtain z from w, or whenever (ii) the j-th
rule rj of a matrix in M is not applicable to wj (w ⇒mat wj in j steps) and
rj ∈ F , in which case rj can be skipped obtaining wj+1 = wj . The language
generated by G is L(G) = {x ∈ T ∗ | S ⇒∗

mat x}, where by ⇒∗

mat we denote the
reflexive and transitive closure of the binary relation ⇒mat. A matrix grammar
in the strong binary normal form is a construct G = (N , T , S,M , F ), where
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N = N1 ∪N2 ∪{S,#} with these three sets mutually disjoint, two distinguished
symbols B(1), B(2) ∈ N2, and the matrices in M are of one of the following forms:

(type-1) (S → XA) with X ∈ N1, A ∈ N2;
(type-2) (X → Y,A → x) with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x| ≤ 2;
(type-3) (X → Y,B(j) → #) with X,Y ∈ N1 and

B(j) → # ∈ F for j = 1, 2;
(type-4) (X → ε, A → x) with X ∈ N1, A ∈ N2, x ∈ T ∗, |x| ≤ 2.
If we do not use the empty string ε, then the rules of type (4) can be consid-

ered of the form (X → a,A → x), with X ∈ N1, a ∈ T,A ∈ N2, x ∈ T ∗, |x| ≤ 2.
Other notions and notations used here can be found in [19].

Theorem 1. A protein-protein interaction system with three membranes, pro-
teins of length two and using rules of types (bondin), (bondout), (pino) and (exo)
has the same computational power as a Turing machine, i.e., are able to describe
algorithmically any normal and abnormal biological evolution.

Proof. We simulate a matrix grammar with appearance checking G = (N, T, S,

M, F ) in the strong binary normal form. We construct a protein-protein inter-
action system Π with three membranes,

Π = (V, [ [ [ ]2]3]1, ε,X,X, ε, A,A,R).
able to simulate a matrix grammar with appearance checking in the strong binary
normal form. The symbols X,A correspond to the initial type-1 matrix (S →
XA) with X ∈ N1, A ∈ N2. Let there be n1 matrices of type-2 and type-4
labelled 1, . . . , n1 and n2 matrices of type-3 labelled n1 + 1, . . . , n1 + n2.

The finite alphabet V of proteins is defined as follows:
V = {β, β, x, x′, A,A, Y, Y , a} ∪ {B(j), αj , αj , α

′

j , α
′

j | 1 ≤ j ≤ 2}

∪ {X,X,Xl, Xl, X
′

l , X
′

l , X
′′

l , X
′′

l , X
(j)
l , X

(j)
l |

X ∈ N1, 1 ≤ l ≤ n1 + n2, 1 ≤ j ≤ 2}.

The set R of rules is constructed as follows:

(i) For each type-2 matrix ml : (X → Y,A → x) with 1 ≤ l ≤ n1, X,Y ∈ N1,
A ∈ N2, x ∈ (N2 ∪ T )∗ and |x| ≤ 2 we consider the rules:
1. [A]X → [ ]A∼X

[A]X → [ ]A∼X

2. [ [ ]A∼X ]A∼X → [A]XlXl
A

3. [ ]Xl
A → [ ]Xl∼A

[A]Xl
→ [ ]A∼Xl

4. [ ]A∼XlA∼Xl
→ [ [ ]Xl

]Xl
, if x = ε

[ ]A∼XlA∼Xl
→ [ [x]Xl

]Xl
, if x ∈ T ∗

[ ]A∼XlA∼Xl
→ [ [x′]Xl

]Xl
, otherwise

(If ml : (X → Y,A → α1α2), α1 ∈ N2, α2 ∈ T ∪ {ε} then x′ = α′

1α2,
and if ml : (X → Y,A → α1α2), α1, α2 ∈ N2 then x′ = α′

1α
′

2)
5. [ [ ]Xl

]Xl
→ [ ]

X′

l
X′

l

6. [ ]
X′

l
X′

l

α′

1 → [ [α′

1]X′

l
α′

1]X′

l

7. [ ]X′

l
α′

1 → [ ]X′

l
∼α′

1

[α′

1]X′

l

→ [ ]
α′

1∼X′

l
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8. [ ]
α′

1∼X′

l
X′

l
∼α′

1
→ [ [α1]X′

l
α1]X′

l

9. [ [ ]X′

l
]
X′

l

→ [ ]
X′′

l
X′′

l

10. [ ]
X′′

l
X′′

l

α′

2 → [ [α′

2]X′′

l
α′

2]X′′

l

11. [ ]X′′

l
α′

2 → [ ]X′′

l
∼α′

2

[α′

2]X′′

l

→ [ ]
α′

2∼X′′

l

12. [ ]
α′

2∼X′′

l
X′′

l
∼α′

2
→ [ [α2]X′

l
α2]X′

l

13. [ ]
X′′

l
X′′

l

→ [ [ ]Y ]Y
14. [ ]

X′

l
X′

l

→ [ [ ]Y ]Y
15. [ [ ]X ]X → [ ]ββ (X does not correspond to a nonterminal matrix)
16. [ ]ββ → [ [ ]β]β
17. [ [ ]β ]β → [ ]ββ
The simulation of a type-2 matrix can be done as follows:

• Whenever there exist proteins A, X , A and X, by using two rules 1
applied in parallel, two protein complexes are created: A ∼ X and A ∼
X . These protein complexes are able to interact, and by using rule 2, the
proteins A and A break their bonds, while X and X are replaced by Xl

and Xl, marking the beginning of the simulation. Using two rules 3
in parallel, two new protein complexes are created: A ∼ Xl and A ∼
Xl. This is followed by rule 4, where A and A break their bonds, and
are replaced by either x (if x ∈ T ∗) or x′ (if x 6∈ T ∗ and x 6= ε).
Also by rule 4, the elements Xl and Xl are distributed between the two
obtained membranes. Then, by applying rule 5, Xl and Xl are replaced
by X ′

l and X ′

l in order to prevent replacing A’s anymore. Now one of the
following evolutions is possible:

∗ Whenever there exists a protein α′

1, rule 6 is applied to introduce the
corresponding protein α′

1. Rules 7 and 8 use protein complexes, and
replace the proteins α′

1 and α′

1 by the proteins α1 and α1. Rule 9 is
used to reach a configuration in which one of the following rule can
be applied:
· rule 10 if there exists the protein α′

2, in order to introduce the
corresponding protein α′

2; rules 11 and 12 use protein complexes,
and replace the proteins α′

2 and α′

2 by the proteins α2 and α2;
· if it does not exist a protein α′

2, rule 13 is used to replace X ′′

l

and X ′′

l by Y and Y , respectively.
∗ Whenever it does not exist proteins α′

1 and α′

2, then rule 14 is applied
to replace X ′

l and X ′

l by Y and Y , respectively.

Rules 13 and 14 end a successfully simulation of a type-2 matrix, and
return to the initial membrane structure. The proteins α1 and α2 are
introduced in order to be able to use the corresponding proteins α1

and α2 when simulating other matrices.
• If the symbol A ∈ N2 is not present (i.e., we cannot apply rule 1),
then rule 15 introduces two symbols β and β which lead to an infinite
evolution (by using rules 16 and 17).
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(ii) For each type-3 matrix m′

l : (X → Y,B(j) → #), X,Y ∈ N1 and B(j) →
# ∈ F , where n1 + 1 ≤ l ≤ n1 + n2, l ∈ labj, j = 1, 2, we consider the rules:

18. [ [ ]X ]X → [ ]
X

(j)
l

X
(j)
l

19. [B(j)]
X

(j)
l

X
(j)
l

→ [ [ ]βB
(j)]β

20. [ ]
X

(j)
l

X
(j)
l

→ [ [ ]Y ]Y

Rule 18 starts the simulation of a type-3 matrix by replacing X and X with

X
(j)
l and X

(j)
l , and thereby remembering the index l of the matrix and the

index j of the possibly present symbol B(j). This is followed by rule 19 that

checks if the symbol B(j) ∈ N2 is present. If this is the case, X
(j)
l and X

(j)
l

are replaced by β and β which lead to an infinite evolution (by using rules

16 and 17). Regardless the presence of B(j), rule 20 is applied replacing X
(j)
l

and X(j) by Y and Y , thus successfully simulating a type-3 matrix, and
returning to the initial membrane structure.

(iii) For a terminal type-4 matrix ml : (X → a,A → x) with 1 ≤ l ≤ n1, X ∈ N1,
a ∈ T , A ∈ N2, x ∈ T ∗ and |x| ≤ 2, we consider the rules

21. [ ]
X′

l
X′

l

→ [ [a]]

22. [ ]
X′′

l
X′′

l

→ [ [a]]

We do not involve the protein a, because a ∈ T . By replacing rule 14 with
rule 21, and rule 13 by rule 22 in the sequence 1-17, a terminal type-4 matrix
is faithfully simulated. The result of a simulation is the multiset of all the
proteins present in the protein-protein interaction system.

We also investigate the computational power of the pair (phago, exo) of op-
erations and prove its universality by using at most four membranes, while the
length of proteins of (phago) and (exo) operations are at most two. We consider
initially a system of three membranes. Comparing with Theorem 1, the higher
number (four) of membranes is triggered by the use of (phago) operation.

Theorem 2. A protein-protein interaction system with four membranes, pro-
teins of length two and using rules of types (bondin), (phago) and (exo) has
the same computational power as a Turing machine, i.e., are able to describe
algorithmically any normal and abnormal biological evolution.

Proof. We simulate a matrix grammar with appearance checking G = (N, T, S,

M, F ) in the strong binary normal form. We construct a protein-protein inter-
action system Π with three membranes,

Π = (V, [ [ ]2[ ]3]1, ε,X,X, ε, A,A,R)

able to simulate a matrix grammar with appearance checking in the strong binary
normal form. The symbols X,A correspond to the initial type-1 matrix (S →
XA) with X ∈ N1, A ∈ N2. Let there be n1 matrices of type-2 and type-4
labelled 1, . . . , n1 and n2 matrices of type-3 labelled n1 + 1, . . . , n1 + n2.

The finite alphabet V of proteins is defined as
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V = {β, β, γ, γ, x, x′, Y, Y , a} ∪ {B(j), αj , αj , α
′

j , α
′

j | 1 ≤ j ≤ 2}

∪ {A,A,Al, Al | A ∈ N2, 1 ≤ l ≤ n1 + n2}

∪ {X,X,Xl, Xl, X
′

l , X
′

l , X
′′

l , X
′′

l , X
(j)
l , X

(j)
l |

X ∈ N1, 1 ≤ l ≤ n1 + n2, 1 ≤ j ≤ 2}.

The set R of rules is constructed as follows:

(i) For each type-2 matrix ml : (X → Y,A → x) with 1 ≤ i ≤ n1, X,Y ∈ N1,
A ∈ N2, x ∈ (N2 ∪ T )∗ and |x| ≤ 2, we consider the rules:

1. [A]X → [ ]A∼X

[A]X → [ ]A∼X

2. [ ]A∼X [ ]A∼X → [ [ [Al]Xl
]X ]X

3. [ [ ]X ]X → [Al]Xl

4. [Al]Xl
→ [ ]Al∼Xl

[Al]Xl
→ [ ]Al∼Xl

5. [ ]Al∼Xl
[ ]Al∼Xl

→ [ [ [ ]
X′

l

]Xl
]Xl

, if x = ε

[ ]Al∼Xl
[ ]Al∼Xl

→ [ [ [x]
X′

l

]Xl
]Xl

, if x ∈ T ∗

[ ]Al∼Xl
[ ]Al∼Xl

→ [ [ [x′]
X′

l

]Xl
]Xl

, otherwise

(If ml : (X → Y,A → α1α2), α1 ∈ N2, α2 ∈ T ∪ {ε} then x′ = α′

1α2,

and if ml : (X → Y,A → α1α2), α1, α2 ∈ N2 then x′ = α′

1α
′

2)

6. [ [ ]Xl
]Xl

→ [ ]
X′

l

7. [α′

1]X′

l
[ ]

X′

l

→ [ [ [α′

1]X′

l
]X′

l
α′

1]X′

l

8. [ [ ]X′

l
α′

1]X′

l

→ [α′

1]X′

l

9. [α′

1]X′

l
→ [ ]α′

1∼X′

l

[α′

1]X′

l

→ [ ]
α′

1∼X′

l

10. [ ]α′

1∼X′

l
[ ]

α′

1∼X′

l

→ [ [ [α1]X′′

l
]X′

l
α1]X′

l

11. [ [ ]X′

l
α1]X′

l

→ [α1]X′′

l

12. [α′

2]X′′

l
[ ]

X′′

l

→ [ [ [α′′

2 ]X′′

l
]X′′

l
α′

2]X′′

l

13. [ [ ]X′′

l
α′

2]X′′

l

→ [α′

2]X′′

l

14. [α′

2]X′′

l
→ [ ]α′

2∼X′′

l

[α′

2]X′′

l

→ [ ]
α′

2∼X′′

l

15. [ ]α′

2∼X′′

l
[ ]

α′

2∼X′′

l

→ [ [ [α2]X′′

l
]X′′

l
α2]X′′

l

16. [ [ ]X′′

l
α2]X′′

l

→ [α2]X′′

l

17. [ ]X′

l
[ ]

X′

l

→ [ [ [ ]Y ]X′

l
]
X′

l

[ ]X′′

l
[ ]

X′′

l

→ [ [ [ ]Y ]X′

l
]
X′

l

18. [ [ ]X′

l
]
X′

l

→ [ ]Y
19. [ ]X [ ]X → [ [ [ ]β ]β ]β (X does not correspond to a nonterminal matrix)

20. [ [ ]β ]β → [ ]β
21. [ ]β [ ]β → [ [ [ ]β]β ]β

The simulation of a type-2 matrix can be done as follows:
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• Whenever there exist proteins A, X , A and X, by using two rules 1
applied in parallel, two protein complexes are created: A ∼ X and A ∼
X . These protein complexes are able to interact, and by using rule 2,
the proteins A and A break their bonds and the proteins Al, Xl, X and
X are created, marking the beginning of the simulation. This is followed
by rule 3, where X and X are replaced by Al, Xl. Using two rules 4 in
parallel, two new protein complexes are created: A ∼ Xl and A ∼ Xl.
This is followed by rule 5, where A and A break their bonds and are
replaced by either x (if x ∈ T ∗) or x′ (if x 6∈ T ∗ and x 6= ε). Also,
by rule 5, the elements Xl and Xl are replaced by the proteins X ′

l , Xl

and Xl. Then, by applying rule 6, Xl and Xl are replaced by X ′

l in order
to prevent replacing A’s anymore. Now one of the following evolutions
is possible:
∗ Whenever there exists a protein α′

1, rule 7 is applied to introduce the
corresponding protein α′

1, and is followed by rule 8 that simplifies
the membrane structure. Rules 9 and 10 use protein complexes, and
replace the proteins α′

1 and α′

1 by the proteins α1 and α1, respec-
tively. Rule 11 is used to reach a configuration in which one of the
following rule can be applied:
· rule 12 if there exists a protein α′

2, in order to introduce the
corresponding protein α′

2; it is followed by rule 13 that simplifies
the membrane structure. Rules 14 and 15 use protein complexes,
and replace the proteins α′

2 and α′

2 by the proteins α2 and α2,
respectively.

· whenever it does not exist such a protein α′

2, rules 17 and 18 are
used to replace X ′′

l and X ′′

l by Y and Y , respectively.
∗ Whenever it does not exist proteins α′

1 and α′

2, then rules 17 and 18
are applied to replace X ′

l and X ′

l by Y and Y , respectively.
Rules 17 and 18 end a successfully simulation of a type-2 matrix, and
return to the initial membrane structure. The proteins α1 and α2 are
introduced in order to be able to use the corresponding proteins α1

and α2 when simulating other matrices.
• Whenever the symbolA ∈ N2 is not present (i.e., we cannot apply rule 1),
then rule 19 is applied introduces two symbols β and β which lead to an
infinite evolution (by using rules 20 and 21).

(ii) For each type-3 matrix m′

l : (X → Y,B(j) → #), X,Y ∈ N1 and B(j) →
# ∈ F , where n1 + 1 ≤ i ≤ n1 + n2, i ∈ labj, j = 1, 2, we consider the rules:

22. [ ]X [ ]X → [ [ [ ]
X

(j)
l

]X ]X
23. [ [ ]X ]X → [ ]

X
(j)
l

24. [B(j)]
X

(j)
l

[ ]
X

(j)
l

→ [ [ [B(j)]β ]β ]β

25. [ ]
X

(j)
l

[ ]
X

(j)
l

→ [ [ [ ]Y ]γ ]γ

26. [ [ ]γ ]γ → [ ]Y
Rule 22 starts the simulation of a type-3 matrix by replacing X and X by

X
(j)
l , X and X, and thereby remembering the index l of the matrix and the
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index j of the possibly present symbol B(j). This is followed by rule 23 in

which the proteins X and X are replaced by X
(j)
l . At this step we need to

verify if the symbol B(j) ∈ N2 is present. If B(j) is present, rule 24 replaces

X
(j)
l and X

(j)
l with two proteins β placed on the inner membranes, while

keeping the protein β on the outer membrane leads to an infinite evolution
(by using rules 20 and 21). Regardless the presence of B(j), rule 25 is applied

and X
(j)
l and X(j) are replaced by Y , γ and γ on the outer membrane.

Rule 26 involves the creation of Y , successfully simulating a type-3 matrix
and returning to the initial membrane structure.

(iii) For a terminal type-4 matrix ml : (X → a,A → x) with 1 ≤ i ≤ n1, X ∈ N1,
a ∈ T , A ∈ N2, x ∈ T ∗ and |x| ≤ 2, we consider the rules:

27. [ ]X′

l
[ ]

X′

l

→ [ [ [ ]a]X′

l
]
X′

l

[ ]X′′

l
[ ]

X′′

l

→ [ [ [ ]a]X′

l
]
X′

l

28. [ [ ]X′

l
]
X′

l

→ [ ]

We do not involve the protein a, because a ∈ T . By replacing rules 17
and 18 with rules 27 and 28 in the sequence 1-21, a terminal type-4 matrix
is faithfully simulated. The result of a simulation is the multiset of all the
proteins present in the system of membranes.

5 Conclusion

In this work we proposed a computing system inspired by protein-protein in-
teraction networks that uses a minimal number of membranes with respect to
the cell movement operations that are initiated by proteins of different length.
We proved that such protein-protein interaction networks can simulate all com-
putable functions. We prove that protein-protein interaction networks have the
same computational power as a Turing machine by using a rather small number
of proteins having at most length two, where length is an abstract measure of
complexity. Up to our knowledge, this is one of the first qualitative and quan-
titative approach in terms of an abstract measure of complexity (called length)
studying the computational power of protein-protein interaction systems.

Inspired by the proteins of the living cell and by fact that membranes pro-
teins are highly dynamic, several types of membrane proteins were previously
investigated. In [8] there were defined several (biological inspired) transforma-
tions of membranes as pino (engulfing zero external membranes), exo (the pro-
cess of expelling some material), phago (engulfing just one external membrane),
mate (merging of membranes), drip (splitting off zero internal membranes), bud
(splitting off one internal membrane). These operations were defined in terms of
membrane computing, and used in defining classes of membrane systems where
objects are placed on membranes [2]. Other approaches have considered proteins
placed both on the membranes and in their compartments. In [17] the objects
do not change their places (those bound on membranes remain there), while in
[7, 9] the objects can move from compartments to membranes and back.
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Abstract. Statistical model checking is a powerful and flexible approach
for formal verification of computational models like P systems, which can
have very large search spaces. Various statistical model checking tools
have been developed, but choosing between them and using the most
appropriate one requires a significant degree of experience, not only be-
cause different tools have different modelling and property specification
languages, but also because they may be designed to support only a cer-
tain subset of property types. Furthermore, their performance can vary
depending on the property types and membrane systems being verified.
In this paper we evaluate the performance of various common statisti-
cal model checkers against a pool of biological models. Our aim is to
help users select the most suitable SMC tools from among the avail-
able options, by comparing their modelling and property specification
languages, capabilities and performances.

Keywords: Membrane systems, P systems, Statistical Model Checking,
SMC tools, SMC performance on SBML models.

1 Introduction

In order to understand the structure and functionality of biological systems,
we need methods which can highlight the spatial and time-dependent evolution
of systems. To this end, scientists have started to utilize the computational
power of machine-executable models, including implementations of membrane
system models, to get a better and deeper understanding of the spatial and
temporal features of biological systems [21]. In particular, the executable nature
of computational models enables scientists to conduct experiments, in silico, in
a fast and cheap manner.

The vast majority of models used for describing biological systems are based
on ordinary differential equations (ODEs) [10], but scientists have recently started
to use computational models as an alternative to mathematical modelling. The
basis of such models is the state machine, which can be used to model numerous
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variables and relate different system states (configurations) to one another [21].
There have been various attempts to model biological systems from a computa-
tional point of view, including the use of Boolean networks [31], Petri nets [45],
the π-calculus [39], interacting state machines [25], L-systems [38] and variants
of P systems (membrane systems) [5, 17, 23, 29, 33, 42]. These techniques are use-
ful for investigating the qualitative features, as are their stochastic counterparts
(e.g., stochastic Petri Nets [26] and stochastic P systems [8, 43]) are useful for
investigating the quantitative features of computation models. More updated de-
tails regarding the use of membrane systems in modelling systems and synthetic
biology applications can be found in [22].

Having built a model, the goal is typically to analyse it, so as to determine
the underlying system’s properties. Various approaches have been devised for
analysing computational models. One widely used method, for example, based
on generating the execution traces of a model, is simulation. Although the sim-
ulation approach is widely applicable, the large number of potential execution
paths in models of realistic systems means that we can often exercise only a
fraction of the complete trace set using current techniques. Especially for non-
deterministic and stochastic systems each state may have more than one possible
successor, which means that different runs of the same basic model may produce
different outcomes [6]. Consequently, some computational paths may never be
exercised, and their conformance to requirements never assessed.

Model checking is another widely recognized approach for analysis and ver-
ification of models, which has been successfully applied both to computer sys-
tems and biological system models. This technique involves representing each
(desired or actual) property as a temporal logic formula, which is then veri-
fied against the model. It formally demonstrates the correctness of a system by
means of strategically investigating the whole of the model’s state space, consid-
ering all paths and guaranteeing their correctness [4, 15, 28]. Model checking has
advantages over conventional approaches like simulation and testing, because it
checks all computational paths and if the specified property is not satisfied it
provides useful feedback by generating a counter-example (i.e. execution path)
that demonstrates how the failure can occur [28].

Initially, model checking was employed for analysing transition systems used
for describing discrete systems. A transition system regards time as discrete, and
describes a set of states and the possible transitions between them, where each
state represents some instantaneous configuration of the system. More recently,
model checking has been extended by adding probabilities to state transitions
(probabilistic model checking); in practice, such systems include discrete-time
Markov chains (DTMC), continuous-time Markov chains (CTMC), and Markov
decision processes (MDP). Probabilistic models are useful for verifying quanti-
tative features of systems.

Typically, the model checking process comprises the following steps [4, 28]:

1. Describing the system model in a high-level modelling language, so as to
provide an unambiguous representation of the input system.
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2. Specifying the desired properties (using a property specification language)
as a set of logical statements, e.g., temporal logic formulas.

3. Verifying whether each property is valid on the model. For non-probabilistic
models the response is either ‘yes’ or ‘no’. For probabilistic systems the
response may instead be some estimate of the ‘probability of correctness’.

“Exact” model checking considers whole state spaces while verifying a prop-
erty, but if the model is relatively large, the verification process can be pro-
hibitively resource intensive and time consuming which is known as ‘state-space
explosion’ problem, so this approach can only be applied to a small number of
biological models. Nonetheless, the intrinsic power of the approach has gained a
good deal of attention from researchers, and model checking has been applied to
various biological phenomena, including, for example, gene regulator networks
(GRNs) and signal-transduction pathways [8, 13] (see [20] for a recent survey of
the use of model checking in systems biology).

To overcome the state-space explosion problem, the statistical model checking
(SMC) approach does not analyse the entire state space, but instead generates a
number of independent simulation traces and uses statistical (e.g., Monte Carlo)
methods to generate an approximate measure of system correctness. This ap-
proach does not guarantee the absolute correctness of the system, but it allows
much larger models be verified (within specified confidence limits) in a faster
manner [12, 37, 49, 51]. This approach allows verifying much larger models with
significantly improved performance.

The number of tools using statistical model checking has been increasing
steadily, as has their application to biological systems [14, 53]. Although the va-
riety of SMC tools gives a certain amount of flexibility and control to users,
each model checker has its own specific pros and cons. One tool may support a
large set of property operators but perform property verifications slowly, while
another may be more efficient at analysing small models, and yet another may
excel at handling larger models. In such cases, the user may need to cover all of
their options by using more than one model checker, but unfortunately the vari-
ous SMCs generally use different modelling and property specification languages.
Formulating properties using even a single SMC modelling language can be a
cumbersome, error-prone, and time wasting experience for non-experts in com-
putational verification (including many biologists), and the difficulties multiply
considerably when more than one SMC needs to be used.

In order to facilitate the modelling and analysis tasks, several software suites
have been proposed, such as Infobiotics Workbench [9] (based on stochastic P
systems [10]) and kPWorkbench framework (based on kernel P systems [17]) [17,
34]. As part of the computational analysis, these tools employ more than one
model checker. Currently, they allow only a manual selection of the tools, relying
on the user expertise for the selection mechanism. These systems automatically
translate the model and queries into the target model checker’s specification
language. While this simplifies the checking process considerably, one still has
to know which target model checker best suits ones needs, and this requires a
significant degree of experience. It is desirable, therefore, to introduce another
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processing layer, so as to reduce human intervention by automatically selecting
the best model checker for any given combination of P system and property
query.

As part of this wider project (Infobiotics Workbench) to provide machine
assistance to users, by automatically identifying the best model checker, we
evaluate the performance of various statistical model checkers against a pool of
biological models. The results reported here can be used to help select the most
suitable SMC tools from the available options, by comparing their modelling and
property specification languages, capabilities and performances (see also [7]).

Paper structure. We begin in Sect. 2 by describing some of the most commonly
used SMC tools, together with their modelling and property-specification lan-
guages. Section 3 compares the usability of these tools in terms of expressibility
of their property specification languages. In Sect. 4 we benchmark the perfor-
mance of these tools when verifying biological models, and describe the relevant
experiment settings. We conclude in Sect. 5 with a summary of our findings, and
highlight open problems that warrant further investigation.

2 A Brief Survey of Current Statistical Model Checkers

In this section, we review some of the most popular and well-maintained statis-
tical model checking tools, together with their modelling and property specifi-
cation languages.

2.1 Tools

PRISM. PRISM (Probabilistic and Symbolic Model Checker) is a widely-used,
powerful probabilistic model checker tool [27, 35]. It has been used for analysing
a range of systems including biological systems, communication, multimedia and
security protocols and many others [46]. It allows building and analysing several
types of probabilistic systems including discrete-time Markov chains (DTMCs)
and continuous-time Markov chains (CTMCs) with their ‘reward’ extension.
PRISM can carry out both probabilistic model checking based on numerical tech-
niques with exhaustive traversal of model, and statistical model checking with
a discrete-event simulation engine [36, 46]. The associated modelling language,
the PRISM language (a high-level state-based language), is the probabilistic
variant of Reactive Modules [1, 35] (for a full description of PRISMs modelling
language, see [46]), which subsumes several property specification languages,
including PCTL, PCTL*, CSL, probabilistic LTL. However, statistical model
checking can only be applied to a limited subset of properties; for example, it
does not support steady-state and LTL-style path properties.

PRISM can be run via both a Graphical User Interface (GUI) or directly from
the command line. Both options facilitate model checking process by allowing
to modify a large set of parameters. The command line option is particularly
useful when users need to run a large number of models. PRISM is open source
software and is available for Windows, Linux and Mac OS X platforms.
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PLASMA-Lab. PLASMA-Lab is a software platform for statistical model
checking of stochastic systems. It provides a flexible plug-in mechanism which
allows users to personalise their own simulator, and it also facilitates distributed
simulations [11]. The tool has been applied to a range of problems, such as
systems biology, rare events, motion planning and systems of systems [44].

The platform supports four modelling languages: Reactive Module Language
(RML) implementation of the PRISM tool language, with two other variants of
RML (see Table 1), and Biological Language [11, 44]. In addition, it provides a
few simulator plug-ins which enable external simulators to be integrated with
PLASMA-Lab, e.g., MATLAB/Simulink. The associated property specification
language is based on Bounded Linear Temporal Logic (B-LTL) which bounds
the number of states by number of steps or time units.

PLASMA-Lab can be run from a GUI or command line with plug-in system,
and while it is not open source it can be embedded within other software pro-
grams as a library. It has been developed using the Java programming language,
which provides compatibility with different operating systems.

Ymer. Ymer is a statistical model checking tool for verifying continuous-time
Markov chains (CTMCs) and generalized semi-Markov processes (GSMPs). The
tool supports parallel generation of simulation traces, which makes Ymer a fast
SMC tool [50].

Ymer uses the PRISM language grammar for its modelling and property
specification language. It employs the CSL formalism for property specification
[48].

Ymer can be invoked via a command line interface only. It has been developed
using the C/C++ programming language, and the source code is open to the
public.

MRMC. MRMC is a tool for numerical and statistical model checking of prob-
abilistic systems. It supports DTMC, CTMC, and using the reward extension of
DTMC and CTMC [30].

The tool does not employ a high-level modelling language, but instead re-
quires a sparse matrix representation of probabilities or rates as input. Describing
systems in transition matrix format is very hard, especially for large systems,
and external tools should be used to automatically generate the required in-
puts. Both PRISM and Performance Evaluation Process Algebra (PEPA) have
extensions which can generate inputs for the MRMC tool [52]. The matrix repre-
sentation also requires that state labels with atomic propositions be provided in
another structure. Properties can be expressed with PCTL and CSL, and with
their reward extensions.

MRMC is a command line tool. It has been developed using the C program-
ming language, and the source code is publicly available. Binary distributions
for Windows, Linux and Mac OS X are also available [41].
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MC2. The MC2 tool enables statistical model checking of simulation traces,
and can perform model checking in parallel.

MC2 does not need a modelling language, instead it imports simulation traces
generated by external tools for stochastic and deterministic models. The tool uses
probabilistic LTL with numerical constraints (PLTLc) for its property specifi-
cation language, which enables defining numerical constraints on free variables
[16].

MC2 can be executed only through its command line interface. The tool was
developed using the Java programming interfaces and is distributed as a .jar

file, therefore the source code is not available to public. The tool is bundled with
a Gillespie simulator, called Gillespie2. As will be explained in the following
section, it is possible to use Gillespie2 to generate simulation traces for the MC2
tool.

2.2 Modelling Languages

As part of the model checking process the system needs to be described in the
target SMC modelling language. If the SMC tool relies on external tools, as
in the case of MRMC and MC2, users will also have to learn the usage and
modelling language of these external tools as well. For example, if users want
to use the MRMC tool, they also have to learn how to use PRISM and how to
model in the PRISM language.

Table 1 summarises the modelling languages associated with each SMC tool.
The PLASMA and Ymer tools provide fair support for the PRISM language.
MRMC expects a transition matrix input, but in practice, for large models, it
is not possible to generate the transition matrix manually, so an external tool
should be used for generating the matrix. MC2 also relies on external tools,
because it does not employ a modelling language, instead it expects externally
generated simulation traces. If users want to use the MC2 tool, they first have
to learn a modelling language and usage of an appropriate simulation tool. For
example, in order to use the Gillespie2 simulator as an external tool for MC2, the
user should be able to describe their model using the Systems Biology Markup
Language (SBML).

3 Usability

Model checking uses temporal logics as property specification languages. In order
to query probabilistic features, probabilistic temporal logics should be used.
Several probabilistic property specification languages exist, such as Probabilistic
Linear Temporal Logic (PLTL) [4], probabilistic LTL with numerical constraints
(PLTLc) [16] and Continuous Stochastic Logic (CSL) [2, 3, 36].

In order to ease the property specification process, frequently used proper-
ties, called patterns, have been identified by previous studies [18, 24]. Patterns
represent recurring properties (e.g., something is always the case, something is
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Table 1. Modelling languages and external dependency of SMC tools.

SMCs Modelling Language(s)
Needs an
External Tool?

External Tool
Modelling Language

PRISM PRISM language NO N/A

PLASMA-Lab

RML of PRISM,
Adaptive RML
(extension of RML
for adaptive systems),
RML with importance sampling,
Biological Language

NO N/A

Ymer PRISM language NO N/A

MRMC Transition matrix
YES,
e.g., PRISM

PRISM language

MC2 N/A
YES,
e.g., Gillespie2

Systems Biology
Markup Language (SBML)

possibly the case), and are generally represented by natural language-like key-
words. An increasing number of studies have been conducted to identify ap-
propriate pattern systems for biological models [23, 32, 40]. Table 2 lists various
popular patterns [24], giving a short description and explaining how they can be
represented using existing temporal logic operators.

Table 2. Property patterns

Patterns Description Temporal Logic

Existence φ1 will eventually hold, within the ./ p bounds.
P./p[F φ1] or
P./p[true U φ1]

Until
φ1 will hold continuously until φ2 eventually holds,
within the ./ p bounds.

P./p[φ1 U φ2]

Response If φ1 holds, then φ2 must hold within the ./ p bounds. P≥1[G (φ1 → (P./p[F φ2]))]

Steady-State
(Long-run)

In the long-run φ1 must hold, within the ./ p bounds.
S./p[φ1] or
P./p[FG (φ1)]

Universality φ1 continuously holds, within the ./ p bounds.
P./p[G φ1] or
P./(1−p)[(F (¬φ1)]

Key. φ1, and φ2 are state formulas; ./ is one of the relations in {<,>,≤,≥}; p ∈ [0, 1] is a probability

with rational bounds; and ./ is negation of inequality operators. P./p is the qualitative operator

which enables users to query qualitative features, those whose result is either ‘yes’ or ‘no’. In order

to query quantitative properties, P=? (quantitative operator) can be used to returns a numeric value

which is the probability that the specified property is true.

The SMCs investigated here employ different grammar syntaxes for property
specification, which makes it harder to use other tools at the same time. Although
Ymer uses the same grammar as PRISM, it excludes some operators, such as the
Always (G) operator. In addition, different SMCs tools may support different sets
of probabilistic temporal logics. In the following, we compare the expressibility of
their specification languages, by checking if the properties can be defined using
just one temporal logic operator (directly supported (DS)), which will be easier
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for practitioners to express; or as a combination of multiple operators (indirectly
supported (IS)); or not supported at all (not supported (NS)). Qualitative and
quantitative operators, with five property patterns which are identified as widely
used by [24], are listed in Table 3.

Table 3. Specifying various key patterns using different SMC tools.

SMCs
Qualitative
Operator

Quantitative
Operator
(P=?)

Existence Until Response
Steady
-State

Universality

PRISM DS DS DS DS NS NS DS

PLASMA-Lab NS NS DS DS IS IS DS

Ymer DS DS DS DS NS NS IS

MRMC DS NS DS DS IS DS DS

MC2 DS DS DS DS IS IS DS

Key. DS = Directly Supported; IS = Indirectly Supported; NS = Not Supported.

The PRISM, Ymer and MC2 tools directly support both Qualitative and
Quantitative operators, but MRMC supports only the Qualitative operator. While
PLASMA-Lab does not allow these operators to be expressed directly with B-
LTL, the verification outputs contain information about the probability of the
property, hence users can interpret the results. Existence, Until and Universality
properties are directly supported by all SMCs, except that Ymer does not employ
an operator for Universality patterns (it needs to be interpreted using the Not
(!) and Eventually (F ) operators, i.e. it is indirectly supported). There is no
single operator to represent the Response pattern directly, but it is indirectly
supported by PLASMA-Lab, MRMC and MC2. The Steady-State pattern can
be either represented by one operator, S, or two operators, F and G. Only
the MRMC tool employs the S operator to allow Steady-State to be expressed
directly, while PLASMA-Lab and MC2 allow it to be expressed indirectly.

4 Experimental Findings

The wide variety of SMC tools gives a certain flexibility and control to users,
but practitioners need to know which of the tools is best for their particular
models and queries. The expressibility of the associated modelling and specifi-
cation languages are not the only criteria, because SMC performance may also
vary depending on the nature of the models and property specifications. We
have therefore conducted a series of experiments to determine the capabilities
and performance of the most commonly used tools [7]. The experiments are con-
ducted on Intel i7-2600 CPU @ 3.40GHz 8 cores, with 16GB RAM running on
Ubuntu 14.04.

We tested each of the five tools against a representative selection of 465
biological models (in SBML format) taken from the BioModels database [19]
(as modified in [47] to fix the stochastic rate constants of all reactions to 1).

– 96 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

The models tested ranged in size from 2 species and 1 reaction, to 2631 species
and 2824 reactions, and each tool/model pair was tested against five different
property specification patterns [24], namely Existence, Until, Response, Steady-
State and Universality. To this end, we first developed a tool for translating
SBML models to SMCs modelling languages, and translating property patterns
to the corresponding SMC specification languages. For each SMC, the number
of simulation traces was set to 500, and the depth of each trace was set to 5000.

The time required for each run is taken to be the combined time required for
model parsing, simulation and verification. Each SMC/model/pattern combina-
tion was tested three times, and the figures reported here give the average total
time required. Where an SMC depends on external tools, we also added the ex-
ternal tool execution time into the total execution time. In particular, therefore,
the total times reported for verifying models with MRMC and MC2 tools are
not their execution times only, but include the time consumed for generating
transition matrices and simulation traces, respectively. We used the PRISM tool
for generating transition matrices to MRMC, and the Gillespie2 for generating
simulation traces to MC2. Where the external tool failed to generate the nec-
essary input for its corresponding SMC, we have recorded the SMC as being
incapable of verifying the model. In order to keep the experiment tractable, if
an SMC required more than 1 hour to complete the run, we halted the process
and again recorded the model as unverifiable.

Table 4 shows the experiment results. The SMCs and the property patterns
are represented in first column and row respectively. The Verified columns under
each pattern show the number of models that could be verified by the corre-
sponding SMC. The Fastest column shows the number of models for which the
corresponding SMC was the fastest tool.

Table 4. The number of model/pattern combinations verified by each SMC tool.

Existence Until Response
Steady
-State

Universality

Verified Fastest Verified Fastest Verified Fastest Verified Fastest Verified Fastest

PRISM 337 15 435 84 NS NS NS NS 370 57

PLASMA
-Lab

465 143 465 54 465 390 465 392 465 80

Ymer 439 304 439 324 NS NS NS NS 439 325

MRMC 75 0 72 0 75 17 57 11 77 0

MC2 458 3 458 3 458 58 458 62 458 3

Key. NS = Not Supported.

The results show that SMC tool capabilities vary depending on the queried
properties. For example, PRISM was only able to verify 337 models against
Existence, and 435 and 370 models against Until and Universality, respectively.
The main reason PRISM failed to verify all of the models is that it expects user
to increase the depth of the simulation traces, and otherwise it cannot verify the
unbounded properties with a reliable approximation. In contrast, PLASMA-Lab
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was able to verify all of the models within 1 hour. Ymer could verify 439 models
for those patterns it supports, thus failing to complete 26 models in the time
available. MRMC was able to verify relatively few models, because it relied on
the PRISM model checker to construct the model and export the associated
transition matrices. Especially for relatively large models PRISM crashed while
generating these matrices (we believe this is related to its CU Decision Diagram
(CUDD) library). MC2 was able to verify 458 models against all of the patterns
tested, and only failed for 7 of them.

Regarding the Fastest data, Ymer was fastest for most model/pattern pairs
(where those patterns were supported). It was fastest for 304 models against Ex-
istence, 324 models against Until and 325 models against Universality. PLASMA-
Lab fastest for only 143 models against Existence, 54 against Until and 80 against
Universality, but did particularly well against Response and Steady-State patterns
(390 and 392 respectively), where it was only competing with MRMC and MC2.
PRISM was fastest for only 15 models with Existence, 84 models with Until and
57 models with Universality. MC2 was fastest for only 3 models (using Gillespie2)
against Existence, Until and Universality, although it did better with 58 models
against Response, and 62 against Steady-State. Finally, MRMC (with PRISM
dependency) was slower than other tools for Existence, Until and Universality,
but did better handling Response (fastest for 17 models) and Steady-State (11
models).

Fig. 1. The range of model sizes for which each SMC tool was fastest.
Key. The x-axis (log scale) indicates model size, where we take ‘size’ to be the product of species

count and reaction count. The graph shows results for each model/tool combination when tested

against Existence; the results for other patterns may differ.

Figure 1 illustrates how the size of the model affects which SMC acts as the
fastest verifier (in this case, when verifying against an Existence pattern), where
we take the ‘size’ of the model to be the product of species count and reactions.
Ymer is the fastest tool for verification of relatively small sized models (the
minimum model size verified fastest by Ymer was 2, maximum 2128, median
137.5), whereas PLASMA-Lab is the fastest for larger models (min = 380, max =
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7429944, median = 11875). PRISM (min = 1023, max = 39770, median = 2304)
and MC2 (min = 722, max = 1892, median = 800) are best for medium-sized
models. The results show that for both the 231 smallest models (size ranging
from 2 to 374), and the 55 largest models (size = 39770 to 7429944), we can
uniquely identify the fastest SMC tool, but for remaining 179 medium-sized
models (size = 380 to 39770), there is no obvious ‘winner’ (note, however, that
these results only relate to verification against the Existence pattern, and the
results for other patterns may be different).

5 Conclusion

The experimental results clearly show that certain SMC tools are best for certain
tasks, but there are also situations where the best choice of SMC is far less clear-
cut, and it is not surprising that users may struggle to select and use the most
suitable SMC tool for their needs. Users need to consider the modelling language
of tools and the external tools they may rely on, and need detailed knowledge
as to which property specification operators are supported, and how to specify
them. Even then, the tool may still fail to complete the verification within a
reasonable time, whereas another tool might be able to run it successfully.

These factors make it extremely difficult for users to know which model
checker to choose, and point to a clear need for automation of the SMC-selection
process. We are currently working to identify novel methods and algorithms to
automate the selection of best SMC tool for a given computational model (more
specifically for P system models) and property patterns. We aim to enable the
integration of our methods within larger software platforms, e.g., IBW and kP-
Workbench, and while this is undoubtedly a challenging task, we are encouraged
by recent developments in related areas, e.g., the automatic selection of stochas-
tic simulation algorithms [47].
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29. Ibarra, O.H., Păun, G.: Membrane computing: A general view. Ann Eur Acad Sci.
EAS Publishing House, Liege pp. 83–101 (2006)

30. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. In: Quantitative Evaluation of
Systems (QEST). pp. 167–176. IEEE Computer Society (2009)

31. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology 22, 437–467 (1969)

32. Konur, S., Gheorghe, M.: A property-driven methodology for formal analysis of
synthetic biology systems. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 12(2), 360–371 (March 2015)

33. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qual-
itative and quantitative analysis of systems and synthetic biology constructs using
P systems. ACS Synthetic Biology 4(1), 83–92 (2015), http://dx.doi.org/10.

1021/sb500134w, pMID: 25090609

34. kPWorkbench. http://kpworkbench.org/, [Online; accessed 08/01/15]

35. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model
checker. In: Computer performance evaluation: modelling techniques and tools, pp.
200–204. Springer Berlin Heidelberg (2002)

36. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Pro-
ceedings of the 7th International Conference on Formal Methods for Performance
Evaluation. pp. 220–270. SFM’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1768017.1768023

– 101 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

37. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview. In:
Proceedings of Runtime Verification: First International Conference, RV 2010, St.
Julians, Malta, November 1-4. pp. 122–135. Springer, Berlin, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16612-9_11

38. Lindenmayer, A., Jürgensen, H.: Grammars of development: Discrete-state models
for growth, differentiation, and gene expression in modular organisms. In: Lin-
denmayer Systems: Impacts on Theoretical Computer Science, Computer Graph-
ics, and Developmental Biology, pp. 3–21. Springer, Berlin, Heidelberg (1992),
http://dx.doi.org/10.1007/978-3-642-58117-5_1

39. Milner, R.: Communicating and mobile systems: The Pi-calculus. Cambridge Uni-
versity Press, New York, NY, USA (1999)

40. Monteiro, P.T., Ropers, D., Mateescu, R., Freitas, A.T., de Jong, H.: Tem-
poral logic patterns for querying dynamic models of cellular interaction net-
works. Bioinformatics 24(16), i227–i233 (Aug 2008), http://dx.doi.org/10.

1093/bioinformatics/btn275

41. Markow Reward Model Checker (MRMC). http://www.mrmc-tool.org/, [Online;
accessed 18/02/15]
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Abstract. We study two variants of P colonies with dynamic environ-
ment changing due to an underlying 0L scheme: systems with two objects
inside agents that can only consume objects, and systems with one object
inside agents using rewriting and communication rules. We show that the
first kind of systems with one consumer agent can generate all sets of
natural numbers computed by partially blind register machines. The sec-
ond kind of systems with two agents with rewriting/consuming rules is
computationally complete. Finally, we demonstrate that P colonies with
one such agent with checking program can simulate catalytic P systems
with one catalyst, and consequently, another relation to partially blind
register machines is established.

Keywords: P colony, catalytic P system, 0L scheme, computational
completeness, partially blind register machine

1 Introduction

P colony was introduced in [10] as a very simple variant of membrane systems
inspired by so-called colonies of formal grammars. See [14] for more information
about membrane systems and [11] for details on grammar systems theory.

There are three basic entities in the P colony model: objects, agents and the
environment. A P colony is composed of agents, each containing a collection of
objects embedded in a membrane. The objects can be placed in the environment,
too. Agents are equipped with programs composed of rules that allow interac-
tions of objects. The number of objects inside each agent is set by definition
and it is usually very low – 1, 2 or 3. The environment of a P colony serves as
a communication channel for agents: an agent is able to affect the behaviour of
another agent by sending objects via the environment. There is also a special
type of environmental objects denoted by e which are present in the environment
in an unlimited number of copies.

A specific variant of P colony called eco-P colony with two object inside each
agent, where the environment can change independently from the agents, was
introduced in [1]. The evolution of the environment is controlled by a 0L scheme
applying context-free rules in parallel to all possible objects in the environment
which are unused by the agents in the current step of computation.
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The activity of agents is based on rules that can be rewriting, communication
or checking; these three types were introduced in [10]. Furthermore, generating,
consuming and transporting rules were introduced in [5].

Rewriting rule a → b allows an agent to rewrite (evolve) one object a placed
inside the agent to object b.

Communication rule c ↔ d exchanges one object c placed inside the agent for
object d from the environment.

Checking rule r1/r2, where each of r1, r2 is a rewriting or a communication rule,
sets a priority between these two rules. The agent tries to apply the first rule
and if it cannot be performed, the agent executes the second rule.

Generating rule a→ bc creates two objects b, c from one object a.
Consuming rule ab→ c rewrites two objects a, b to one object c.
Transporting rule of the form (a in) or (a out) is used to transport one object

from the environment into the agent, or from the agent to the environment,
respectively. The rule is always associated with a consuming/generating rule
to keep a constant number of objects inside the agent.

The rules are combined into programs in such a way that all objects inside
the agent are affected by execution of the rules in every step. Consequently, the
number of rules in the program is the same as the number of objects inside the
agent.

The programs that contain consuming rules are called consuming programs
and the programs with generating rules are called generating programs. The
agent that only contains consuming resp. generating programs is called consumer
resp. sender.

P colonies with senders and consumers without evolving environment were
studied in [5] and the authors proved their computational completeness (in the
Turing sense), as well as computational completeness of P colonies with senders
and consumers with 0L scheme for the environment. Many papers were devoted
to P colonies with rewriting and communication rules without evolving environ-
ment, e.g., [4, 6, 12], and there are two book chapters in [3] and [14] describing
this topic.

In this paper we focus on P colonies with evolving environment. The paper is
structured as follows: The second section is devoted to definitions and notations
used in the paper. The third section contains results obtained during studies of
P colonies with consumers only. In the fourth section we study P colonies with
one object inside the agent and rewriting/communication rules. The fifth section
studies the relation of P colonies with evolving environment and catalytic P sys-
tems. The paper concludes with a summary of presented results and possibilities
of future work.

2 Definitions

Throughout the paper we assume the reader to be familiar with basic of formal
automata and language theory. We introduce notation used in the paper.
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We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

Σ is a notation for the alphabet. Let Σ∗ be set of all words over alphabet
Σ (including the empty word ε). For the length of the word w ∈ Σ∗ we use the
notation |w| and the number of occurrences of symbol a ∈ Σ in w is denoted
by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The cardinality of M , denoted by card(M), is
defined by card(M) =

∑
a∈V f(a).

Any multiset of objects M with the set of objects V = {ai, . . . an} can be
represented as a string w over alphabet V with |w|ai

= f(ai); 1 ≤ i ≤ n.
Obviously, all words obtained from w by permuting the letters can also represent
M , and ε represents the empty multiset. Because of string representation we can
denote the set of all multisets over the set of objects V by V ∗.

The mechanism of evolution of the environment is based on a 0L scheme.
It is a pair (Σ,P ), where Σ is the alphabet of 0L scheme and P is the set of
context-free rules fulfilling the condition ∀a ∈ Σ ∃α ∈ Σ∗ such that (a→ α) ∈ P .
For w1, w2 ∈ Σ∗ we write w1 ⇒ w2 if w1 = a1a1 . . . an, w2 = α2α2 . . . αn, for
ai → αi ∈ P, 1 ≤ i ≤ n

A register machine [13] is a construct M = (m,H, l0, lh, P ) where:
- m is the number of registers, H is a set of instruction labels,
- l0 is the initial/start label, lh is the final label,
- P is the finite set of instructions injectively labelled with the elements

from the given set H.
The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the contents of the register r and non-deterministically
choose one of the instructions (labelled with) l2 or l3 to proceed with.

l1 : (SUB(r), l2, l3) If the register r is not empty, then subtract 1 from its con-
tents and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this instruc-
tion.

Without loss of generality, one can assume that in each ADD-instruction
l1 : (ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3)
the labels l1, l2, l3 are mutually distinct. The register machine M computes a set
N(M) of numbers in the following way: we start with all registers empty (hence
storing the number zero) with the instruction with label l0 and we proceed to
apply the instructions as indicated by the labels (and made possible by the
contents of registers). If we reach the halt instruction, then the number stored
at that time in the register 1 is said to be computed by M and hence it is
introduced in N(M). Because of non-determinism of the machine, N(M) can be
an infinite set. The family of sets of numbers computed by register machines is
denoted by N·RM.
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Theorem 1 ([13]). N·RM = N·RE.

Moreover, we call a register machine partially blind if we interpret the
subtract instructions in the following way: l1 : (SUB(r); l2; l3) - if register

r is not empty, then subtract one from its contents and non-deterministically
choose to continue with one of the instructions l2 or l3; if register r is empty
when attempting to decrement register r, then the program ends without yielding
a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers are empty.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by N·RMpb. The partially blind register machine accepts a

proper subset of N·RE :

Theorem 2 ([7]).
N·RMpb = N ·MAT , where N ·MAT is the Parikh image of the class of

languages generated by matrix grammars without appearance checking.

2.1 Catalytic P systems

Definition 1. An extended catalytic P system of degree m ≥ 1 is a construct

Π = (O,C, µ,w1, . . . , wm, R1, . . . , Rm, i0) where

1. O is the alphabet of objects;
2. C ⊆ O is the alphabet of catalysts;
3. µ is a membrane structure of degree m with membranes labeled in a one-to-

one manner with the natural numbers 1, 2, . . . ,m;
4. w1, . . . , wm ∈ O∗ are the multisets of objects initially present in the m regions

of µ;
5. Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over O associated with the

regions 1, 2, . . . ,m of µ; these evolution rules are of the forms ca → cv or
a → v, where c is a catalyst, a is an object from O \ C, and v is a string
from ((O \ C)× {here, out, in})∗;

6. i0 ∈ {0, 1, . . . ,m} indicates the output region of Π.

The membrane structure and the multisets in Π constitute a configuration of
the P system; the initial configuration is given by the initial multisets w1, . . . , wm.
A transition between configurations is governed by the application of the evo-
lution rules, which is done in the maximally parallel way, i.e., only applicable
multisets of rules which cannot be extended by further rules have to be applied
to the objects in all membrane regions.

The application of a rule u→ v in a region containing a multiset M results in
subtracting from M the multiset identified by u, and then in adding the multiset
identified by v. The objects can eventually be transported through membranes
due to the targets in and out. We refer to [14] for further details and examples.
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The P system continues with applying multisets of rules in the maximally
parallel way until there remain no applicable rules in any region of Π. Then
the system halts. We consider the number of objects from O \ C contained in
the output region i0 at the moment when the system halts as the result of the
underlying computation of Π. The system is called extended since the catalytic
objects in C are not counted to the result of a computation. The set of results
of all computations possible in Π is called the set of natural numbers generated
by Π and it is denoted by N(Π).

The problem how to count the catalysts in the case of generating catalytic
P systems can be avoided if using external output, i.e., the output is sent to the
environment, indicated by i0 = 0. Denote by NOPm(catk) the class of sets of
natural numbers generated by catalytic P systems with external output, with at
most m membranes and at most k catalysts.

2.2 Generalized P colonies

Definition 2. A P colony with capacity c ≥ 1 is the structure

Π = (Σ, e, f, vE , DE , B1, . . . , Bn), where

– Σ is the alphabet of the colony, its elements are called objects,
– e is the basic (environmental) object of the colony, e ∈ Σ,
– f is final object of the colony, f ∈ Σ,
– vE is the initial content of the environment, vE ∈ (Σ − {e})∗,
– DE is 0L scheme (Σ,PE), where PE is the set of context free rules,
– Bi, 1 ≤ i ≤ n, are the agents, every agent is the structure Bi = (oi, Pi),

where oi is the multiset over Σ, it defines the initial state (content) of the
agent Bi and |oi| = c and Pi = {pi,1, . . . , pi,ki

} is the finite set of programs
of three types:

(1) generating program with generating rules a → bc and transporting rules
d out - the number of generating rules is the same as the number of
transporting rules.

(2) consuming program with consuming rules ab→ c and transporting rules
d in - the number of consuming rules is the same as the number of
transporting rules.

(3) rewriting/communication program can contain three types of rules:
� a→ b, called a rewriting rule,
� c↔ d, called a communication rule,
� r1/r2, called a checking rule; each of r1, r2 is a rewriting or a commu-

nication rule.

Every agent has only one type of programs. The agent with generating pro-
grams is called sender and the agent with consuming programs is called con-
sumer. The capacity of a P colony with senders and consumers must be an even
number.

The initial configuration of a P colony is the (n + 1)-tuple (o1, . . . , on, vE),
with the interpretation of the symbols o1, . . . , on, vE as in Definition 2. In general,
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the configuration of the P colony Π is defined as (n+ 1)-tuple (w1, . . . , wn, wE),
where wi represents the multiset of objects inside the i-th agent, |wi| = c, 1 ≤
i ≤ n, and wE ∈ (Σ − {e})∗ is the multiset of objects different from e placed in
the environment.

At each step of the (parallel) computation every agent tries to find one of
its programs to apply. If the number of applicable programs is higher than one,
the agent non-deterministically chooses one. At each step of a computation, the
set of active agents executing a program must be maximal, i.e., no further agent
can be added to it.

By applying programs, the P colony passes from one configuration to another
configuration. Objects in the environment unaffected by any program in the
given step are rewritten by the 0L scheme DE . A sequence of configurations
starting from the initial configuration is called a computation. A configuration
is halting if the P colony has no applicable program. Each halting computation
has associated a result – the number of copies of the final object placed in the
environment in a halting configuration.

N (Π) = {|wE |f | (o1, . . . , on, vE)⇒∗ (w1, . . . , wn, wE)},

where (o1, . . . , on, vE) is the initial configuration, (w1, . . . , wn, wE) is the final
configuration, and ⇒∗ denotes reflexive and transitive closure of ⇒.

Let us denote NEPCOL(i, j, k, u, v, w) the family of the sets computing by
P colonies with at most j ≥ 1 agents with i ≥ 1 objects inside the agent and
with at most k ≥ 1 programs associated with each agent such that:

u = check if the P colony uses rewriting/communication rules with
checking rules

u = no-check if the P colony uses rewriting/communication rules without
checking rules

u = s/c/sc if the P colony contains only sender / only consumer / both
sender and consumer agents

v = pas if the rules of 0L scheme are of type a→ a only,

v = act if the set of rules of 0L scheme disposes of at least one rule
of another type than a→ a,

w = ini if the environment or agents contain initially objects different
from e, otherwise w is omitted,

If a numerical parameter is unbounded, we denote it by a ∗.
In [5] the authors deal with P colonies with senders and consumers with

“passive” environment, they show that

NEPCOL(2, 3, ∗, sc, pas) = N·RE.

In [1] there are results of P colonies with “active” environment:

NEPCOL(2, 2, ∗, c, act, ini) = N·RE
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NEPCOL(2, 2, ∗, sc, pas, ini) ⊇ N·RMpb.

Other results are shown for P colonies with “passive” environment and rewrit-
ing/communication rules and with only one object inside the agent in [2]

NEPCOL(1, 4, ∗, check, pas) = N·RE

and in [5]

NEPCOL(1, 6, ∗,no-check, pas) = N·RE.

3 P colonies with senders and consumers

In this section we study computational power of P colonies with two objects
inside the agent - consumer and with active environment. We extend the previous
results reported in [1].

Theorem 3. N·RMpb ⊆ NEPCOL(2, 1, ∗, c, act, ini).

Proof. Consider register machine M = (m,H, l0, lh, P ). All labels from the set
H are objects in the P colony. The content of register r is represented by the
number of copies of objects ar placed in the environment.

We construct the P colony Π = (Σ, e, a1, l0d,DE , B1) with:

− Σ = {li, l′i, l′′i , li, li, Li | li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, f},
− B1 = (de, P1).

At the beginning of computation there is object l0 and auxiliary object d in the
environment. Object l0 corresponds with the initial label of the instructions of
M .

An instruction li = (ADD(r), lj , lk) is simulated by the environment and the
agent by using the following rules and programs:

ENV :

A : li → arljd;
B : li → arlkd;

B1 :

1 : 〈de→ e; d in〉;

The computation is done in such a way that 0L scheme works in the envi-
ronment, it executes adding one to the content of register r (generate one copy
of object ar – the rule labelled A or B) and generating of the objects lj or lk,
label of instruction which will be executed in the next steps of computation of
register machine M . Agent B1 consumes object d from the environment. Notice
that there is at most one copy of d in the environment.

An instruction li : (SUB(r), lj , lk) is simulated by following rules and pro-
grams:
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ENV :

C : li → lil
′
i;

D : l′i → l′′i ;
E : l′′i → lj lk;

F : lj → ljd;

G : lk → lkd;

B1 :

2 : 〈de→ e; li in〉;
3 : 〈lie→ Lj ; ar in〉;
4 : 〈lie→ f ; e in〉;
5 : 〈Ljar → e; lj in〉;
6 : 〈Ljar → e; lk in〉;
7 : 〈lje→ e; d in〉;
8 : 〈lke→ e; d in〉;
9 : 〈fe→ f ; e in〉;

If there is the object li (the label of SUB-instruction) in the environment, the
0L scheme generates (using the rule labelled C) the object li. This is the message
for the agent B1 to try to consume one copy of object ar from the environment
(try to subtract one from the content of register r.)

If the agent is successful (using program labelled 3), then in the next step
the agent consumes lj or lk and the computation will follow in simulation of
instruction labelled lk or lj .

If the agent does not consume object ar – there is no ar in the environment
or the agent non-deterministically chooses program 4 instead of the applicable
program 3 – the agent generates object f and the computation will never end
because the program 9 will be applicable.

For the halting instruction we add the rule lh → lh to the 0L scheme, as
well as “passive” 0L rules for other objects which are not changed by other
environmental rules (for example e→ e, ar → ar, . . . ). Whenever the simulated
register machine executes the HALT instruction, neither object d nor object
li ∈ H \ {lh} will appear in the environment any more and the computation will
halt.

P colony Π starts its computation with object l0 in the environment and the
simulation of the instruction labelled l0. By the rules and programs it places and
deletes from the environment the objects ar and halts its computation only after
object lh appears in the environment. The result of a computation is the number
of copies of object a1 placed in the environment at the end of the computation.
No other halting computation can be executed in the constructed P colony.

4 P colonies with rewriting/communication rules

In this section we deal with P colonies with ”active” environment and with one
object inside agents. We prove that such a P colony with two agents can generate
every recursively enumerable set of natural numbers.

Theorem 4. NEPCOL(1, 2, ∗,no-check, act, ini) = N·RE.

Proof. Let us consider register machine M = (m,H, l0, lh, P ). For all labels from
the set H we construct corresponding objects in the P colony Π. The content
of register i will be represented by the number of copies of objects ai placed in
the environment.
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We construct the P colony Π = (Σ, e, a1, l0d,DE , B1) with:

− Σ = {li, l′i, l′′i , li, li, li, l1i , l2i , l3i , l4i ,Mi,M
1
i ,M

2
i ,M

3
i ,M

4
i , Ni, N

1
i , N

2
i , N

3
i ,

N4
i | li ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪ {e, d, f, g},

− B1 = (e, P1)
− B2 = (e, P2).
The object l0 corresponds to the label of the first instruction executed by the

register machine.
The instruction li : (ADD(r), lj , lk) will be simulated by the environment and

the agent B1 by using following rules and programs:
ENV :

A : li → arl
′
j ;

B : li → arl
′
k;

C : l′j → ljd;
D : l′k → lkd;

B1 :

1 : 〈e↔ d〉;
2 : 〈d→ e〉;

The simulation of the ADD-instruction starts by rewriting the object li to
object ar (adds one to the content of register r) by executing rule A or B and
object lj (rule C) or object lk (rule D).

The instruction li : (SUB(r), lj , lk) is simulated by using the following rules
and programs:

ENV :

E : li → l1i li;
F : l1i → l2i d;
G : l2i → l3i ;
H : l3i → l4i d;
I : l4i →MiNi;
J : Mi →M1

i ;
K : M1

i →M2
i ;

L : M2
i →M3

i ;
M : M3

i →M4
i ;

N : M4
i → ljd;

O : Ni → N1
i ;

P : N1
i → N2

i ;
Q : N2

i → N3
i ;

R : N3
i → N4

i ;
S : N4

i → lkd;

B1 :

3 : 〈e↔ g〉;
4 : 〈g → f〉;
5 : 〈f ↔ li〉;
6 : 〈li → e〉;

B2 :

7 : 〈e↔ li〉;
8 : 〈li → li〉;
9 : 〈li ↔ ar〉;

10 : 〈ar → g〉;
11 : 〈g ↔ Ni〉;
12 : 〈Ni → e〉;
13 : 〈li ↔Mi〉;
14 : 〈Mi → e〉;

The simulation starts with rule E generating objects l1i li. Object l1i keeps
the environmental rules busy for 6 steps until actions of agents are completed.

Object li causes the agent B2 to generate object li and, in turn, to consume
object ar.

Table 1 shows the example of the simulation of the SUB-instruction when
the register to be decremented stores a value greater than zero. Symbol w in
the environment (column wE) denotes an arbitrary multiset containing objects
in {ai | 1 ≤ i ≤ m}. Symbol ? in the last row means that the applicable rule
depends on the next instruction to be simulated labelled lj .
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step wE w1 w2 applicable rules and programs

0. lidarw e e E 1 −
1. l1i liarw d e F 2 7

2. l2i darw e li G 1 8

3. l3i arw d li H 2 9

4. l4i dliw e ar I 1 10

5. MiNiliw d g J 2 11

6. M1
i gliw e Ni K 3 12

7. M2
i Lkliw g e L 4 −

8. M3
i liw f e M 5 −

9. M4
i fw li e N 6 −

10. ljdfw e e ? 1 −

Table 1. The simulation of the SUB-instruction when register r is not empty

Table 2 shows the example of the simulation of the SUB-instruction when
register to be decremented stores zero. Symbol w in the environment (column
wE) denotes an arbitrary multiset containing objects in {ai | 1 ≤ i ≤ m, i 6= r}.
Symbol ? in the last row means that the applicable rule depends on the next
instruction to be simulated labelled lk.

step wE w1 w2 applicable rules and programs

0. lidw e e E 1 −
1. l1i liw d e F 2 7

2. l2i dw e li G 1 8

3. l3iw d li H 2 −
4. l4i dw e li I 1 −
5. MiNiw d li O 2 13

6. N1
i gliw e Mi P 3 14

7. N2
i liw g e Q 4 −

8. N3
i liw f e R 5 −

9. N4
i fw li e S 6 −

10. lkdfw e e ? 1 −

Table 2. The simulation of the SUB-instruction when register r is empty

For instruction lh :HALT we add the rule T : lh → lh. The environment does
not produce object d any more. The computation halts as no agent can execute
a program. The result is the number of objects a1 placed in the environment and
it corresponds to the result of a successful computation in the register machine.
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5 P colonies versus catalytic P systems

In this section we study the relation of P colonies with communication rules,
and catalytic P systems in the generating mode. We show that any catalytic P
system with one catalyst can be simulated by a P colony with checking rules and
with one agent. As a consequence, the relation of these P colonies and partially
blind register machines is established.

Theorem 5. For an arbitrary extended catalytic P system Π with one catalyst
there exists a P colony Π ′ with checking rules and one agent containing one
object such that N(Π) = N(Π ′).

Proof. Note first that in the generating case, due to the existence of flattening
procedures described, e.g., in [8], one can assume without loss of generality that
the catalytic P system Π = (O,C, [], w,R, i0) has a single membrane and that
its output is collected in the environment, i.e., i0 = 0.

We construct the P colony Π ′ = (Σ, e, f, w \C,DE , B1) as follows: each step
of Π is simulated by two steps of Π ′.

1. In the first step the P colony checks whether the P system can apply at least
one rule (if not, the P colony halts in the next step). Then both catalytic
and non-catalytic rules are randomly applied in the environment, rewriting
all objects to their primed versions.

2. In the second step the agent checks whether at most one catalytic rule was
applied (if not, a trap symbol is produced). Simultaneously the environment
signals whether there had been unused objects in the previous step to which
catalytic rules could have been applied. If yes, and simultaneously if no
catalytic rules was chosen, the agent produces the trap symbol in the next
step (which is the first step of a new cycle). All primed objects are rewritten
back to their original versions.

Formally, let

Oc = {a ∈ (O \ C) | ∃u : (ca→ cu) ∈ R and 6 ∃v : (a→ v) ∈ R}

be the set of objects to which only catalytic rules can be applied. Let the
alphabet of the P colony be constructed as

Σ = O ∪ {a′ | a ∈ (O \ C)} ∪ {a′′ | a ∈ Oc} ∪ {c, f, k, n, s, t}

such that the newly added symbols do not appear in O. Define further a
mapping ϕ : (O \ C)× {here, out} −→ Σ as follows:

ϕ(a, dest) =

{
f if dest = out,
a′ otherwise.

Let the agent of the P colony adopt the form B1 = (n, P1). We construct the
rules of the environment and the agent as specified in the following table:
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Step Programs of the agent Rules of the environment

1.
〈n↔ s/n→ k〉
〈c→ k〉

{a→ ϕ(u)n | (a→ u) ∈ R} ∪
{a→ ϕ(u)c | (ca→ cu) ∈ R} ∪
{a→ a′′n | a ∈ Oc} ∪ {s→ ε}

2. 〈k ↔ c/k ↔ n〉
{a′ → a | a ∈ O} ∪
{a′′ → as | a ∈ Oc} ∪
{c→ t, n→ ε}

In addition, the agent contains programs 〈k ↔ t〉 , 〈t→ t〉 , 〈s→ s〉 , and the
environment contains rules a → a for each object a ∈ Σ not affected by any of
the rules described above.

In the first simulation step the agent contains object n and there is no s in
the environment, hence n → k is the only applicable rule. Simultaneously the
environment simulates the application of rules of the P system to all objects to
which any rule can be applied. If more than one rule is applicable to an object,
one is randomly chosen. Each application of a catalytic rule produces also one
object c and a non-catalytic rule produces n.

When the simulated P system sends an object to the output region 0 by
applying a rule with target out, the P colony produces instead the final object
f, hence the number of final objects equals the number of objects in the output
region of the simulated P system.

In the second step the agent checks whether any rule of the P system was
applicable, i.e., whether there is at least one c or n in the environment. If not,
the agent can run no program and the colony halts. Simultaneously, if there
were more than one object c in the environment, indicating that more than one
catalytic rule has been applied, then at least one object c is rewritten by the
environment to t. Object t is the trap object – whenever it appears, the colony
never halts and produces no output (note the programs 〈k ↔ t〉 and 〈t→ t〉 of
the agent).

Finally, rules of the form a′′ → as in the environment produce the object s. If
there is n in the agent and s in the environment in the next step, this means that
no catalytic rule was applied even if there were unused objects to which such a
rule was applicable, i.e., the maximal parallelism condition of the P system was
broken. In this situation the rule n↔ s is selected, and s enters the agent where
it acts as another trap symbol.

The whole cycle repeats again and again for each simulated step of the P
system Π. As explained above, any incorrect simulation results in the appearance
of the trap symbol s or t which forces the P colony to run forever and produce
no result. Hence only correct simulation results can be produced, and the P
colony halts if and only if so does the simulated P system. We can conclude that
N(Π) = N(Π ′).

Corollary 1. N·RMpb ⊆ NEPCOL(1, 1, ∗, check, act, ini).
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Proof. The paper [9] demonstrates that N·RMpb ⊆ NOP1(cat1). Then the state-

ment follows by Theorem 5.

6 Conclusions

In this paper we presented the results obtained during the research of P colonies
with evolving environment. We have shown that P colonies with one consumer
agent can generate all sets of natural numbers computable by partially blind
register machines. If we place two agents with one object inside each of them
and with no-checking rewriting/communication programs into the evolving en-
vironment, the obtained P colony is computationally complete in the Turing
sense.

Finally, we have demonstrated that when checking programs are allowed,
then a P colony with one agent is sufficient to simulate a catalytic P system
with one catalyst. Consequently, these colonies can again generate sets of natural
numbers computable by partially blind register machines. We conjecture that
this simulation principle is extensible to the case of more catalysts / more agents.

It remains an open problem whether any of the presented results can be
further strengthened, or whether the class N·RMpb is also an upper bound of

the generative power of the mentioned types of P colonies.
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Abstract. Membrane systems are described by a language in which
multisets of objects are encapsulated in hierarchical structures of com-
partments. The language provides primitives for parallel communication
of objects across membranes and a primitive for membrane creation. The
behaviour of each membrane is specified by means of multiset rewriting
rules. We provide a compositional semantics for membrane systems by
using the continuation passing style and metric spaces.

1 Introduction

Membrane systems are presented in [11], and several of their applications in [5].
In this paper we investigate membrane systems by using continuation pass-
ing style in the tradition of programming language semantics. By using metric
spaces, we provide a denotational semantics for a simple concurrent language in
which computations are specified by means of multiset rewriting rules distributed
into membrane-delimited compartments. The language provides a primitive for
membrane creation, but we ignore other operations that can be used for express-
ing the dynamics of systems with active membranes, such as membrane division
or membrane dissolution [11]. However, we are confident that most of the mem-
brane computing concepts that are investigated in the literature can receive a
denotational semantics by using the techniques that we employ in this paper.

The essential tools in this semantic investigation are the classic continuation-
passing style in which the control is passed explicitly in the form of a continu-
ation [2], as well as the continuations for concurrency [9, 12]; both are used to
describe in a compositional manner the behaviour of dynamic hierarchical sys-
tems. An important feature of this semantic approach is compositionality: the
meaning of a compound construction is determined solely on the basis of the
meanings of its components.

The aim of this paper is to offer a semantic investigation in the area of mem-
brane computing by using methods and tools from the tradition of programming
language semantics. We assume the reader is familiar with the denotational (com-
positional) style of assigning meanings to language constructs. The mathematical
methodology of metric semantics used in this paper is presented in detail in the
monograph [4]. We use a language LMC in which the syntactic constructions are
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statements and programs. When referring to the behaviour of an LMC program
we use the term execution. An LMC program comprises a list of membrane dec-
larations, which is similar to a list of class declarations in an object-oriented
language. The list of membrane declarations is followed by an LMC statement
which is executed in the skin membrane.

In previous papers we have defined the operational semantics for membrane
systems [3, 6], and proved certain semantic properties. In [7, 8] we have applied
continuation semantics for concurrency [12] in providing denotational seman-
tics for a simple multiset rewriting concurrent language. Subsequently, in [10],
we have investigated the semantics of a language where computations are dis-
tributed to membrane-delimited regions, but without any feature for transmem-
brane communication. The languages described in [7, 10] are all subsumed by the
language LMC investigated in this paper. The language LMC combines various
advanced control concepts, including maximal parallelism, nondeterministic be-
haviour and the sequencing of phases within each computation step. In order to
achieve a compositional approach of the complex control structures incorporated
in LMC we employ a domain of continuations combined with a standard pow-
erdomain construction to represent nondeterministic behaviour. An element of
a powerdomain is a collection of sequences of observables representing dynamic
membrane structures. We use a fixed point construction to express the semantics
of multiset rewriting computations.

2 Mathematical Preliminaries

Mathematical preliminaries are those presented in [10]. A notation (x ∈)X in-
troduces the set X with typical element x ranging over X. A multiset is a gen-
eralization of a set. Intuitively, a multiset is a collection in which an element
may occur more than once. One can represent the concept of a multiset of el-
ements of type X by using functions from X → N, or partial functions from
X → N+, where N+ = N \ {0}. One can represent a multiset m ∈ [X] by
enumerating its elements between parentheses ’[’ and ’]’. The elements in a mul-
tiset are not ordered; to give yet another intuition, a multiset is an unordered
list of elements. For example, [] is the empty multiset, i.e. the function with
empty graph. As another example [x1, x1, x2] = [x1, x2, x1] = [x2, x1, x1] is the
multiset with two occurrences of x1 and one occurrence of x2, i.e. the function
m : {x1, x2} → N+,m(x1) = 2,m(x2) = 1. There are several operations defined
on multisets m1,m2 ∈ [X], defined as in [10].

The denotational semantics given in this paper is built within the mathe-
matical framework of 1-bounded complete metric spaces. We work with the fol-
lowing notions which we assume known: metric and ultrametric space, isometry
(distance preserving bijection between metric spaces, denoted by ’∼=’), complete
metric space, and compact set. For details the reader may consult [4]. We recall
that if (X, dX), (Y, dY ) are metric spaces, a function f :X→Y is a contraction
if ∃c ∈ R, 0 ≤ c < 1, ∀x1, x2 ∈ X : dY (f(x1), f(x2))≤c · dX(x1, x2). In metric
semantics it is customary to attach a contracting factor of c = 1

2 to each compu-
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tation step. When c = 1 the function f is called non-expansive. In what follows

we denote the set of all nonexpansive functions from X to Y by X
1

→Y . The
following theorem is at the core of metric semantics.

Theorem 1 (Banach). Let (X, dX) be a complete metric space. Each contrac-
tion f : X→X has a unique fixed point.

If (x, y ∈)X is any nonempty set, one can define the discrete metric on X
(d : X ×X → [0, 1]) as follows: d(x, y) = 0 if x = y, and d(x, y) = 1 otherwise.
(X, d) is a complete ultrametric space.

Let (x ∈)X be a countable set. We denote [X]
not.
=
⋃
A∈Pfinite(X){m | m ∈

(A→ N+)}, where Pfinite(X) is the powerset of all finite subsets of X. [X] is the
set of finite multisets of elements of type X. Since X is countable, Pfinite(X) is
also countable. We use the abbreviation Pnco(·) to denote the powerset of non-
empty and compact subsets of ’·’. We also assume it is known how to construct
composed spaces ( 1

2 -identity, product, disjoint union, function space, all non-
empty and compact subsets) for given metric spaces [4]. We often suppress the
metrics in domain definitions, and write 1

2 · X instead of (X, d 1
2 ·X

).

3 Syntax and Semantics of LMC

We assume that O is a countable set. Let (w ∈)W = [O] be the set of all finite
multisets of O objects, and (M ∈)Mname be a set of membrane names.

Syntax of LMC is given by

(a) (Statements) x(∈ X) ::= o | in(o) | out(o) | new(M,y) | x‖x
where y(∈ Y ) ::= o | y ‖ y

(b) (Rules) r(∈ R) ::= rε | w ⇒ x; r
(c) (Membrane declarations)

d(∈MD) ::= membrane M {r}
D(∈MDs) ::= d | d;D

(d) (Programs) ρ(∈ LMC) ::= D;x .

An LMC statement may be either an object o, a communication statement in(o)
or out(o), a membrane creation statement of the form new(M,y), where M is a
membrane name and y is a statement of the type Y , or a parallel composition of
two LMC statements of the form x1 ‖ x2. Note that, a statement y ∈ Y may be
either an object, or a parallel composition of two or more objects, but y cannot
contain communication or membrane creation primitives. Obviously, Y ⊆ X.

A statement out(o) indicates that the object o must leave the membrane
where it is currently located, and becomes an element of the surrounding re-
gion. A statement in(o) indicates that the object o must enter one of the child
membranes, nondeterministically chosen.

The execution of a membrane created by a statement new(M,y) will always
begin by a multiset rewriting step. In the first step after its creation, a membrane
cannot perform any communication or membrane creation operations. However,
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by using the rewriting rules specified in the definition of M , the newly created
membrane (instance) can next immediately create new inner membranes and
communication objects and it can proceed as any other membrane.

An LMC program D;x consists of a list D ∈ MDs of membrane declara-
tions and a statement x ∈ X. A membrane declaration introduces a type of
membranes, which can be instantiated. In LMC we speak of membrane types,
and membrane instances. Each membrane instance has a (unique) label. The
execution of the program D;x starts with the creation of an instance of the first
membrane type in the declarations list D, which becomes a skin membrane; the
skin membrane starts the execution of the program by executing statement x.

A membrane declaration membrane M {r} indicates the name M ∈Mname
of the membrane (type) and a (possibly empty) list of rules r ∈ R, which specify
the behaviour of objects inside any instance of a membrane of the type M . A
rule w ⇒ x is composed of two elements: a multiset w ∈ W and a statement
x ∈ X. An LMC statement is a concurrent composition of objects, which behave
as a multiset. In this interpretation w ⇒ x is a multiset rewriting rule, specifying
that w is rewritten as x. Intuitively, a rule w ⇒ x is like a ’procedure’ definition,
with ’name’ w and ’body’ x. The objects o1, · · · , on in the multiset w = [o1 · · · on]
are ’fragments’ of the procedure name. Only when all the ’fragments’ of such
a ’procedure name’ are prepared for interaction a rewriting rule is applied, and
so replaces the ’name of the procedure’ with its ’body’. The ’body’ (the right
hand side) of a rule is a statement. Further explanations concerning the syntactic
constructions for specifying membranes and rules in LMC are provided in [10].

If we consider the analogy with object-oriented programming, we can state
clearly that in LMC an object o ∈ O is not an instance of a membrane. In LMC ,
an object is just an elementary statement, a symbol taken from the alphabet O.
The reader may wonder why we use the semantic notion of a multiset in the
syntax definition of LMC . According to the syntax, we can use rules of the form
j ⇒ x, where j ::= o | j& j is the set of ’method names’. We use multisets as
’method names’ because the order in which fragments occur in such a ’method
name’ is irrelevant.

Semantics of LMC is given by using a denotational approach. Denotational
semantics (known also as mathematical semantics) is an important step in for-
malizing the meanings of languages/systems. The most important principle in
denotational semantics is compositionality: the meaning of a compound con-
struction is determined solely on the basis of the meanings of its components.
In general, denotational semantics assigns to every construction of a language
a certain formal meaning, which is an element from a suitably chosen mathe-
matical model. Following [4], we choose to use the mathematical framework of
complete metric spaces for our semantic description. In this approach, one can
prove the semantic properties by making use of Banach’s theorem which states
that contracting functions on complete metric spaces have unique fixed points.

We introduce the metric domains to express the behaviour of LMC programs,
and then give a continuation-based denotational semantics for LMC . The final
yield of the denotational semantics is an element of a linear time domain [4].
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We assume given a (countably) infinite set (l ∈)L of membrane labels. Let
also (ς ∈)Pfinite(L) be the set of all finite subsets of L. We also assume given
a function ν : Pfinite(L) → L, such that ν(ς) /∈ ς, for any ς ∈ Pfinite(L). We
obtain a possible example of such a set L and function ν by putting L = N, and
ν(ς) = 1 +max{n | n ∈ ς}, with the convention that ν(∅) = 0.

Following [3], we define the set (µ ∈)Mb of membranes inductively:

– If M ∈Mname is a membrane name, l ∈ L is a label and w ∈W = [O] is a
multiset of O objects then 〈M, l | w; 〉 ∈ Mb; 〈M, l | w; 〉 is called a (simple
or) elementary membrane;

– If M ∈ Mname is a membrane name, l ∈ L is a label, w ∈ W is a multiset
of O objects, and µ1, . . . , µn ∈ Mb then 〈M, l | w;µ1, . . . , µn〉 ∈ Mb; 〈M, l |
w;µ1, . . . , µn〉 is called a composite membrane.

We provide a continuation-based denotational semantics for LMC in which we use
the linear time domain (p ∈)P = Pnco(Q), where (q ∈)Q ∼= {ε}+ (Mb× 1

2 · Q).
In this domain equation, the set Mb is endowed with the discrete metric (i.e. an
ultrametric). According to [4], the above domain equation has a unique solution
(up to isomorphism). The solution is a complete ultrametric space.

An element of the domain P is a non-empty and compact collection of Q
sequences. Q is a domain of finite and infinite sequences over Mb; ε is the
empty sequence. Instead of (µ1, (µ2, . . . (µn, ε) . . .)) and (µ1, (µ2, . . .)), we write
µ1µ2 . . . µn and µ1µ2 . . ., respectively. In particular, instead of (µ, ε) (a sequence
of length 1) we write just µ. Nondeterministic behaviour in LMC is defined by
using the operator + : (P×P)→ P defined by p1 + p2={q | q ∈ p1 ∪ p2, q 6= ε}
∪{ε | ε ∈ p1 ∩ p2}. It is easy to see that + is well-defined, non-expansive, asso-
ciative and commutative [4]. Also, we use the following notations: µ · q = (µ, q)
and µ · p = {µ · q | q ∈ p}, for any µ ∈ Mb, q ∈ Q, p ∈ P. Based on the results
presented in [4], we have d(µ · p1, µ · p2) = 1

2 ·d(p1, p2).
Let (α ∈)A = Mb→ Pfinite(Mb). We define a set (θ, ϑ ∈)Θ of actions:

– θ0 ∈ Θ (θ0 is a distinct element of Θ);
– If α ∈ A then α ∈ Θ, for any α ∈ A;
– If α ∈ A and θ ∈ Θ, then ( · , α, θ) ∈ Θ; we use a triple ( · , α, θ) to represent a

sequential composition between α and θ, but write α · θ instead of ( · , α, θ);
– If θ1, θ2 ∈ Θ, then ( ||| , θ1, θ2) ∈ Θ; instead of ( ||| , θ1, θ2), we use θ1 ||| θ2 for

parallel composition between θ1 and θ2.

We define a valuation T [[·]] : Θ → A by

T [[θ0]] = λµ . {µ},
T [[α]] = T [[α · θ0]] = α,

T [[α · θ]] = λµ .
⋃
{T [[θ]](µ′) | µ′ ∈ α(µ)} if θ 6= θ0,

T [[θ ||| θ0]] = T [[θ0 ||| θ]] = T [[θ]],

T [[θ1 ||| θ2]] = T [[θ1]] |̂|| T [[θ2]],

where the operator |̂|| : (A×A)→ A is given by

α1 |̂||α2 = λµ . ({µ2 | µ1 ∈ α1(µ), µ2 ∈ α2(µ1)} ∪ {µ1 | µ2 ∈ α2(µ), µ1 ∈ α1(µ2)}).
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Clearly, |̂|| is well-defined, i.e. θ1 |̂|| θ2 ∈ A for any θ1, θ2 ∈ A. Well-definedness
of T [[θ]] follows by an easy induction on the structure of θ.

In the following definitions, Θ is just a set endowed with the discrete metric.
We define the domain D of computations, and the domain K of continuations

by (ϕ ∈)D = K
1

→F and (κ ∈)K = (Θ × Θ) → F , where F = Pfinite(L) →
Mb→ P. In the domain definitions, the sets Θ, Pfinite(L) and Mb are endowed
with discrete metrics, and D is a domain of nonexpansive functions [4].

Definition 1. (Semantics of parallel composition)

(a) We define ‖: (D×D)
1

→D by

ϕ1 ‖ ϕ2 = λκ . ϕ1(λ(θ1, ϑ1) . ϕ2(λ(θ2, ϑ2) . κ(θ1 |̂|| θ2, ϑ1 |̂||ϑ2)));

(b) For any n ∈ N we define ‖n (·) : Dn → D (Dn = D× · · · ×D n times,
n ≥ 1) by ‖1 (ϕ) =ϕ, and ‖n+1 (ϕ1, . . . , ϕn+1) =ϕ1 ‖ (‖n (ϕ2, . . . , ϕn+1)).
For readability, we write ϕ1 ‖ · · · ‖ ϕn instead of ‖n (ϕ1, . . . , ϕn).

Proposition 1. The operator for parallel composition ‖ is well-defined and non-
expansive in both arguments.

The above property is not difficult to prove. Other properties, e.g., the associa-
tivity or the commutativity of ‖, are more difficult to establish. A formal proof
of the fact that ‖ is associative employs the technique introduced in [9].

In order to define the semantics of LMC statements we need some aux-
iliary operators on membranes. Given a membrane µ, add(o, l′, µ) adds the
object o to the multiset stored in the membrane region indicated by label l′.
newM (Mnew, lnew, l

′, µ) creates a new membrane region with label lnew of the
type Mnew as an inner membrane (a child) of the membrane region with label l′.
The operator out(o, l′, µ) sends the object o from its membrane (instance) to the
surrounding region. The operator in(o, l′, µ) sends the object o from its mem-
brane into a child membrane, nondeterministically chosen. The operator in is
used to specify the fact that an object enters into a child membrane which is
nondeterministically selected. If there is no child membrane, in is inoperative.

The operators are defined by induction on the structure of the membrane
hierarchy, considering the fact that membranes (regions) are labelled in a one-
to-one manner with labels from the given set L. All definitions are recursive.
We only provide the definitions for some representative (non-recursive) cases,
leaving the other cases to the reader. ] is the multiset sum operation [1].

add : (O × L×Mb)→Mb,

add(o, l′, 〈M, l | w; 〉) =

{
〈M, l | [o] ] w; 〉 if l′ = l
〈M, l | w; 〉 if l′ 6= l

newM : (Mname× L× L×Mb)→Mb,

newM (Mnew, lnew, l
′, 〈M, l | w; 〉) =

{
〈M, l | w; 〈Mnew, lnew | []; 〉〉 if l′ = l
〈M, l | w; 〉 if l′ 6= l
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in : (O × L×Mb)→ Pfinite(Mb),
in(o, l, 〈M, l | w; 〉) = {〈M, l | [o] ] w; 〉},
in(o, l, 〈M, l | w;µ1, . . . , 〈Mi, li | wi;µi1, . . . , µini〉, . . . , µn〉) =
{〈M, l | w;µ1, . . . , 〈Mi, li | [o] ] wi;µi1, . . . , µini〉, . . . , µn〉 | 1 ≤ i ≤ n},

out : (O × L×Mb)→Mb,
out(o, l′, 〈M, l | w;µ1, . . . , µn〉) = 〈M, l | [o] ] w;µ1, . . . , µn〉,

if l′ ∈ {label(µ1), . . . , label(µn)} .

Definition 2. Denotational semantics [[·]] : X → L → D of LMC statements is
defined by

[[o]](l) = λκ . κ(λµ . { add(o, l, µ)}, θ0),
[[ in(o)]](l) = λκ . κ(λµ . in(o, l, µ), θ0),

[[ out(o)]](l) = λκ . κ(λµ . { out(o, l, µ)}, θ0),
[[ new(M,y)]](l) = λκ . λς . let l′ = ν(ς); ς ′ = {l′} ∪ ς in

[[y]](l′)(λ(θ, ϑ) . κ(θ0, (λµ . {newM (M, l′, l, µ)}) · (θ ||| ϑ)))(ς ′),
[[x1 ‖ x2]](l) = ([[x1]](l)) ‖ ([[x2]](l)).

Proposition 2. The denotational mapping [[·]] is well-defined.
In particular, [[x]](l) is non-expansive for any x ∈ X, l ∈ L.

The denotational mapping [[x]](l) takes as parameters a statement x ∈ X and
a label l ∈ L. The parameter l is the membrane label where the statement x
is executed. Each continuation takes as parameter a pair of actions (θ, ϑ). The
action θ represents the behaviour of object and communication actions. The
action ϑ represents the behaviour of membrane creation actions. Within each
computation step the two actions θ and ϑ are executed in this sequence by the
initial continuation κ0: first the action θ, then the action ϑ. However, note that
only one observable is produced by each computation step.

All equations are straightforward, except the equation handling membrane
creation. In the equation defining the semantics of new(M,y), a new label l′ is
created. Next, the body y of the statement new(M,y) is executed. The mem-
brane creation action λµ . {newM (M, l′, l, µ)}) is executed before θ ||| ϑ. Thus,
the actions produced by [[y]] are executed in the newly created membrane with
label l′ only after the new membrane is created.

The mapping appRules(r, w′) computes a (finite) set of pairs, each pair con-
sisting of a multiset of rules applicable to w′ and an irreducible submultiset of w′.
⊆ and \ are operations for submultiset testing and multiset difference [1].

appRules : (R×W )→ Pfinite(R×W ),
appRules(r, w) = if aux(r, w) = ∅ then {(rε, w)} else
{(w ⇒ x� r′, w′′) | ((w, x), w′) ∈ aux(r, w), (r′, w′′) ∈ appRules(r, w′)},

where aux : (R×W )→ Pfinite((W ×X)×W ),
aux(rε, w) = ∅,
aux(w′ ⇒ x′� r, w) =

if (w′ ⊆ w) then {((w′, x′), w \ w′)} ∪ aux(r, w) else aux(r, w).
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We define a scheduler mapping sched : (Mb ×MDs) → Pfinite(D ×Mb)
by induction on the structure of the membrane. The function sched(µ,D) takes
as arguments a membrane µ and a list of membrane declarations D, and yields
a finite set of pairs, each pair consisting of a computation and a corresponding
membrane. It uses appRules to compute the applicable rules for each mem-
brane region. We use sched in a fixed point construction required to define the
semantics of parallel rewriting of multisets in a compositional manner.

sched(〈M, l | w; 〉, D) =
{([[x1]](l) ‖ · · · ‖ [[xn]](l) ‖ [[o1]](l) ‖ · · · ‖ [[om]](l), 〈M, l | []; 〉)
| (r′, w′) ∈ appRules(rules(D,M), w),
r′ = w1 ⇒ x1; . . . ;wn ⇒ xn; rε, w

′ = [o1, . . . , om]},
sched(〈M, l | w;µ1, . . . , µk〉, D) =
{([[x1]](l) ‖ · · · ‖ [[xn]](l) ‖ [[o1]](l) ‖ · · · ‖ [[om]](l) ‖
ϕ1 ‖ · · · ‖ ϕk, 〈M, l | [];µ′1, . . . , µ′k〉)
| (r′, w′) ∈ appRules(rules(D,M), w),
r′ = w1 ⇒ x1; . . . ;wn ⇒ xn; rε, w

′ = [o1, . . . , om],
(ϕ1, µ

′
1) ∈ sched(µ1, D), . . . , (ϕk, µ

′
k) ∈ sched(µk, D)}.

Given a list of membrane declarations, we also define a mapping haltMb :
(Mb×MDs)→ Bool which decides whether the membrane system has reached
a halting configuration. haltMb is defined with the aid of an auxiliary mapping
haltM : (Mname×MDs×W )→ Bool, based on the mapping appRules.

haltMb(〈M, l | w; 〉, D) = haltM(M,D,w),
haltMb(〈M, l | w;µ1, . . . , µn〉, D) =
haltM(M,D,w) ∧ haltMb(µ1, D) ∧ · · · ∧ haltMb(µn, D),

haltM(M,D,w) = ( appRules( rules(D,M), w) = {(rε, w)}).

We define a mapping Ψ : MDs→ K→ K by

Ψ(D)(k)(θ, ϑ)(ς)(µ) =
+{µ2 · ( if (haltMb(µ,D)) then {ε} else ϕ(κ)(ς)(µ′2))
| µ1 ∈ T [[θ]](µ), µ2 ∈ T [[ϑ]](µ1), (ϕ, µ′2) ∈ sched(µ2, D)}.

For anyD ∈MDs, we define the initial continuation κ0 ∈ K by κ0 = fix(Ψ(D)).
This definition is justified by Proposition 3 which states that Ψ(D) is 1

2 contrac-
tive for any D ∈ MDs. According to Banach’s Theorem, Ψ(D) has a unique
fixed point for any D ∈MDs.

Proposition 3. Ψ(D) ∈ K
1
2→K for any D ∈MDs, i.e.

d(Ψ(D)(κ1)(θ, ϑ)(ς)(µ), Ψ(D)(κ2)(θ, ϑ)(ς)(µ)) ≤ 1
2 · d(κ1, κ2)

for any D ∈MDs, κ1, κ2 ∈ K, (θ, ϑ) ∈ Θ ×Θ, ς ∈ Pfinite(A) and µ ∈Mb.

Proof. If haltMb(µ,D) = true, then

d(Ψ(D)(κ1)(θ, ϑ)(ς)(µ), Ψ(D)(κ2)(θ, ϑ)(ς)(µ)) = 0 ≤ 1
2 · d(κ1, κ2).
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Otherwise, if haltMb(µ,D) = false, we have

d(Ψ(D)(κ1)(θ, ϑ)(ς)(µ), Ψ(D)(κ2)(θ, ϑ)(ς)(µ)) [+ is nonexpansive]
≤ 1

2 · max{d(ϕ(κ1)(ς)(µ′2), ϕ(κ2)(ς)(µ′2))
| µ1 ∈ T [[θ]](µ), µ2 ∈ T [[ϑ]](µ1), (ϕ, µ′2) ∈ sched(µ2, D)}

[since ϕ ∈ D, ϕ is nonexpansive]
≤ 1

2 · d(κ1, κ2).

Definition 3. Semantics of LMC programs is defined by D[[·]] : LMC → P,

D[[D;x]] = [[x]](l0)(κ0)(ς0)(µ0),

where D = membrane M0 {r0}; · · · ; membrane Mm {rm}, κ0 = fix(Ψ(D)),
l0 = ν(∅), ς0 = {l0} and µ0 = 〈M0, l0 | []; 〉.

The function D[[ρ]] defines the semantics of an LMC program ρ = D;x, where
D ∈ MDs and x ∈ X. The execution of an LMC program begins with the
creation of the skin which is an instance of the first membrane type in the dec-
laration list D. The label of the skin is ν(∅); the statement x is executed in
the skin membrane. In the spirit of denotational semantics, the initial continu-
ation κ0 ∈ K is defined as a fixed point of the higher-order mapping Ψ .

Example 1. We consider the LMC program ρ = D;x, where D is:

membrane M0 {
[o1, o4]⇒ o2 ‖ o4;
[o2]⇒ in(o5) ‖ new(M1, o1 ‖ o5);
[o2]⇒ o4;
[o5]⇒ in(o4);
[o3]⇒ in(o5) };

membrane M1 {
[o1]⇒ o2 ‖ out(o3);
[o2]⇒ o3 }

and x = o1 ‖ o4. Let µ1, µ2, µ3, µ4, µ5, µ6 ∈Mb

µ1 = 〈M0, l0 | [o1, o4]; 〉
µ2 = 〈M0, l0 | [o2, o4]; 〉
µ3 = 〈M0, l0 | [o4, o4]; 〉
µ4 = 〈M0, l0 | [o4, o5]; 〈M1, l1 | [o1, o5]; 〉〉
µ5 = 〈M0, l0 | [o3, o4]; 〈M1, l1 | [o2, o4, o5]; 〉〉
µ6 = 〈M0, l0 | [o4]; 〈M1, l1 | [o3, o4, o5, o5]; 〉〉

One can check that D[[ρ]] = {µ1µ2µ3, µ1µ2µ4µ5µ6}.

The denotational specification presented in this paper was developed following
a prototyping approach; we used the functional language Haskell as a prototyp-
ing tool (and metalanguage) for this denotational semantics. A couple of LMC
programs (including the LMC example discussed above) are provided, and can
be tested by using the semantic interpreter available at

http://users.utcluj.ro/~ eneia/CMC17-semMC.hs .
The semantic interpreter is a complete Haskell implementation of the denota-
tional semantics presented in this paper.
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4 Conclusion

In this paper we introduce a language LMC in which computations are speci-
fied by means of multiset rewriting rules applied in a maximal parallel way into
membrane-delimited compartments. In LMC there is a notion of membrane dec-
laration, and membranes are grouped into classes based on their rewriting rules.
There exist primitives for parallel communication of objects between adjacent
membranes, and a primitive for membrane creation (instantiation).

We present a denotational semantics designed with complete metric spaces
for LMC . For illustration, we presented a small LMC example program; other
examples are available on our Haskell implementation webpage.
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Abstract. Robotics has emerged as a challenging and fruitful applica-
tion area for membrane computing. Since the introduction of membrane
controllers based on numerical P systems for single robots, more models
based on P colony automata and P swarms, an extension of P colonies,
have been proposed. More, the focus has extended from the control of
a single robot to the control of multiple, simple robots in a swarm. An
overlooked issue in swarm robotics is the security of the swarm. While
there are multiple potential security hazards in a robotic swarm, there
have been no approaches to address both the control and security of a
swarm. In this paper we report the development of an P colonies-based
algorithm for secure dispersion of robots in a swarm. The overall concept
and the software is tested on a swarm of simulated robots.

Keywords: membrane computing; P colonies; P swarms; swarm robotics; se-
curity; Kilobot.

1 Introduction

A swarm robotic system (SRS) is composed of many simple robots (agents)
which exhibit a group (or swarm) intelligence that emerge as a result of local
interactions between robots and interactions of the robots with the environment.
In a SRS there is no centralized controller and the global behavior is the result
of simple individual rules. Scalability, flexibility, and robustness are key features
of SRSs [10]. A recent review of swarm robotics identifies a number of tasks
relevant to SRSs: aggregation (gathering a number of agents in a well defined
place), flocking (large groups of agents should move together to a well defined
target location), foraging (finding and exploiting food sources), object cluster-
ing and sorting (finding and grouping objects together), navigation (reaching
a target with the help of other agents), path formation (building a path be-
tween two locations in the environment), collaborative manipulation, dynamic
task allocation, and deployment [1]. Dispersion is a common deployment algo-
rithm in which the agents should position themselves away from each other.
Stigmergic communication through the environment is often used in deployment
algorithms [11]. Security challenges for SRSs have been identified in [5], such as:
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resource constraints, physical capture, lack of centralized control, identity and
authorization, key management, and intrusion detection.

Membrane computing models are parallel and distributed systems and have
a number of similarities with SRSs. The P colonies have the same foundation
ideas as swarm robotics: to use simple agents, placed in a shared environment,
leading to emergent behaviors [7]. The basic rules in a P colony are the evolution
rules of the form a→ b (rewriting object a into object b) and the communication
rules of the form c↔ d (exchanging the object c within the agent with the object
d within the internal environment of the P colony). An XP colony is a P colony
with exteroceptive rules of the form c ⇔ d which checks the presence of an
object d in the global environment (outside the internal environment of the P
colony). If this is present, the object c will be exchanged with object d from the
global environment. A P swarm is a colony of XP colonies, and this concept was
introduced in [2] and extended in [4].

This paper proposes the use of P colonies for implementing a secure dispersion
algorithm for a SRS. While dispersing the robots, the P colony model is also
programmed for detection of non-self robots (robots that are not part of the
original swarm) and consequently only the self robots (the original robots of the
swarm) will be dispersed while ignoring the intruders.

This paper is organized as follows. The next section gives the control model
in which the basic modules of a robot are abstracted as agents in a P colony.
All of the P colonies abstracting the robots are interacting using messages ex-
changed by the robots and the sensed distance between neighbors in the swarm.
The idea is validated on securely dispersing a swarm of simulated Kilobot robots
(dispersion and intrusion detection simultaneously). The experiments are based
on using Lulu, a Python simulator for P colonies and P swarms [4] that was
ported to the C language, and Kilombo, a Kilobot robot simulator written in
C which allows the fast simulation of swarms of up to 1000 robots [6]. Demon-
stration movies that support our ideas are available at [3]. The paper ends with
conclusions and directions for further improvements.

2 Robot control model

The P colony based robot control model is presented in Figure 1. This model
is an improved version of the original P colony controller described in [4] where
only the command and motion agents were defined thus restraining the robot
control model to a feed-forward type. The various input and output devices of
the robot are abstracted as P colony agents that can interact through the P
colony environment.

The model abstracts the sensors and effectors available on the Kilobot robot [9]
that was used for testing the model. The only component that was not included
is the light sensor.

From a generic perspective, the controller input is represented by the distance
and symbolic id of any given neighbor robot and a new RGB led color and/or
motion direction represent the controller output. Each agent has a specific set
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Fig. 1. The structure of the P colony based robot controller.

of objects that can be processed. These objects can be either request (input) or
response (output) objects and form the basis of the communication mechanism
used within the controller. The dashed lines that connect the Input and Output
components of the model to the corresponding agents signify that background
processing is needed in order to convert real values to symbolic objects.

The message distance agent is used to model the infrared distance estimation
function that can be executed after the successful reception of a message from
a neighbor robot. Because of the fact that multiple messages can be received in
a short amount of time, all messages are buffered internally by the controller
application and, upon request (d next object), the agent can respond with one
of three objects (S id, B id, B all). These values correspond to the comparison
of the current distance from robot that has the unique symbolic number id with
a threshold value and have the meaning of distance Small and distance Big
respectively. If there is no neighbor in the infrared communication range of the
robot or all robots are at distance Big then the B all object is emitted in the
environment.

Both of the output devices, the RGB LED and the movement direction, are
controlled by agents that only receive request objects. These request objects
are maintained in the respective agents for one simulation step before being
consumed. Because of the limited set of possible colors (64) and movement di-
rections (stop, straight, left, right), symbolic objects can be directly mapped to
the Kilobot end effector states.

The command agent is responsible for coordinating the input and output
agents and is where all of the application specific logic is implemented using P
colony programs.

One similarly structured robot controller that uses P colonies is presented
in [8]. The main difference between the models, apart from the particularities
imposed by the different robots that were modelled, is the fact that the afore-
mentioned model has an input filter that spreads coded input data that only the
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specialized input agents can consume and transform into information that can
be used by the command agent. The same procedure is done in reverse for the
output agents. In [8] the term input filter refers to a function that continuously
emits symbolic objects into the P colony environment that correspond to sensor
readings. The same is done in reverse for the output filter. If these objects are
not processed on time, i.e objects are emitted at a high rate then the model can
react non-deterministically due to the fact that objects that represent low and
high sensor readings could both be present at the same time. In this scenario,
the P colony functioning principle of stochastically choosing only one of many
executable programs is applied. The model presented in this paper limits the
number of objects that can be exchanged at any one time by agents in an at-
tempt to reduce the number of programs needed and maintains the deterministic
execution by using the request-response interaction method.

3 Case study. The dispersion of a swarm of simulated
Kilobot robots while ignoring intruders

Based on the previously discussed control model structure we now present a dis-
persion algorithm that includes an identity detection security method that uses
a unique number assigned to each robot and was tested on simulated Kilobot
robots. The basic task of the robots is to choose a random direction of movement
whenever they sense other neighbor robots that are closer than a threshold dis-
tance, and so to disperse in the environment. The development process of new
emerging technologies generally does not consider the application security as an
explicit design objective but rather an afterthought [5]. Because of the defining
characteristics of a robot swarm such as mobility, distributed control, auton-
omy, local communication and emergent behavior, the importance of a security
method has been considered from the early stages of algorithm development.
The formal definition of the P colony used to implement the dispersion algo-
rithm that includes an ID based method of ignoring intruders is presented in
Figure 2. We used the term Env to refer to the definition of the multiset that
represents the initial convents of the P colony environment. This notation is
different from the standard definition of a P colony [7] in that we specify the
initial contents of the environment, other than only elementary (e) objects. In
order to execute the P colony, it was converted to the input language used by
the Lulu P colony / Pswarm simulator simulator. The entire source code of the
algorithm along with demonstration videos are available at [3]. The details of the
input language as well as the functioning principles of the simulator are given
in [4]. In order the emphasize the control section of the algorithm, the code for
the input/output agents has been discarded.

We used the Kilombo simulator to execute the algorithm on a swarm of
Kilobot robots. The main advantage of this simulator is the fact that it is written
in the C language and allows the PC simulation of the same code that runs on
the robot, reducing the time spent on converting the code between the two
platforms [6]. Other distinctive features are the ability to simulate a swarm of
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1 Π1 = (A, e, f, Env, command,motion,msg distance, led rgb) where:
2 A = {m 0,m S,m L,m R, c R, c G, c B, c W, c 0, d next,B all, S ∗, B ∗, id ∗}
3 Env = {id 0, id 1, id 2}
4 command = ({e, e, e, d next},
5 < e→ e; e→ e; e→ e; d next↔ e >)
6
7 < e→ c G; e→ m S; e↔ id ∗ /e↔ e; e↔ S ∗ >
8 < e→ c G; e→ m S; e↔ id ∗ /e↔ e; e↔ S ∗ >
9 < e→ c R; e→ m L; e↔ id ∗ /e↔ e; e↔ S ∗ >

10 < e→ c B; e→ m R; e↔ id ∗ /e↔ e; e↔ S ∗ >
11
12 < e→ e; e→ e; e→ e; e↔ B ∗ >
13 < e→ e; e→ e; e→ e;B ∗ → d next >
14
15 < e→ c W ; e→ m 0; e→ e; e↔ B all >
16
17 < c G→ e;m S → e; e→ e;S ∗ → d next >
18 < c R→ e;m L→ e; e→ e;S ∗ → d next >
19 < c B → e;m R→ e; e→ e;S ∗ → d next >
20
21 < c G↔ e;m S ↔ e; id ∗ ↔ e;S ∗ → d next >
22 < c R↔ e;m L↔ e; id ∗ ↔ e;S ∗ → d next >
23 < c B ↔ e;m R↔ e; id ∗ ↔ e;S ∗ → d next >
24
25 < c W ↔ e;m 0↔ e; e→ e;B all→ d next >
26 )

Fig. 2. Dispersion algorithm with self/non-self identification based on a unique sym-
bolic id used by each swarm member

1000 robots at a peak speed of 100 times faster than real robots and the use of
configurable sensor noise [6] that helps reduce the differences in runtime behavior
between real and simulated Kilobots.

The initial assumption made by the algorithm is that any swarm robot is
assigned a unique number that corresponds to a symbolic id object such as id 2
for robot 2. In the case of Kilobot robots this unique number is stored in the
non-volatile memory at calibration time and can be used by applications. In this
implementation, all robots execute the same compiled code and determine their
symbolic id at startup by subtracting the smallest robot id from the swarm (e.g.
60) from their unique robot id (e.g. 65). In this example, the symbolic id = 65 –
60 = 5. This conversion is necessary because it allows the P colony to be aware
of what robot it is being executed on and consequently expand and execute its
programs.

For the purpose of increased clarity and error avoidance we have implemented
a simple wildcard expansion function within the Lulu P colony simulator, that
allows the expansion of ‘*’ wildcards with each value from a supplied suffix list.
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We used this type of expansion in defining the alphabet of the P colony from
line 2 in Figure 2, where, for example, the S ∗ object would be replaced by
{S 0, S 1, S 2, S 3, S 4} if this P colony would be executed with a pre-specified
swarm size of five robots. The same type of expansion is done for entire programs
in an attempt to avoid repeated definitions.

The actual security measure is implemented in the programs between lines 7
to 10 and is based on a checking rule (e ↔ id ∗ /e ↔ e) that verifies that the
associated id object that corresponds to the received S id object exists in the P
colony environment. There are four different programs because in the event of
a sensor perception of small distance from a given neighbor (S id object in the
environment) the robot should randomly choose one of the four programs if the
associated id object is present in the environment (the neighbor is known). The
random program selection is based on the fact that agents that have multiple
executing programs have to choose only one for execution and in this case we
defined four programs in order to make the robot chose with a probability of 50%
to go straight and 25% left or right. For example, if the initially declared swarm
size is 4 with robots 0, 1, 2, 3 and the environment has the contents listed in
line 3 of Figure 2, then if robot 0 encounters robot 3, it will not move away from
it because id 3 is not present in the P colony environment. After checking the
id object, it is returned in the environment for later use. This security method
is implemented using only P colony programs and does not rely on background
security services such as cryptographic functions so as not to move away from
the central concept of symbolic control of a robot using membrane computing
models. An alternative security measure is proposed in the final section.

An example simulation of the dispersion of 9 robots and one intruder is
illustrated in Figure 3 with and without the ID security method. In the example
on the left side, the intruder (colored in violet) is moved close to one of the
robots that starts to move away from the intruder. These behaviours are also
illustrated by two demonstration videos [3].

Fig. 3. Simulating the dispersion of 9 robots and the effects of the intruder robot
(violet) on the final positions of the robots when running without (left) and with
(right) the ID security feature.
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4 Conclusions and further work

This paper presents the use of P colonies for dispersing a swarm of robots while
ignoring intruders using a security method that is implemented symbolically
inside the P colony programs. Future work will include the development and
testing of models that abstract the communication between one or more neigh-
bors through the exchange of symbolic objects from one P colony to another. On
the security aspect, improvements can be made by not having to rely on a global
ID that could be guessed by an intruder. Instead, we seek to develop a signature
type authentication method, also implemented at a symbolic level, that would
help locally validate that the emitter of a message is indeed a member of the
swarm and would improve on the previously mentioned disadvantages.
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3. Andrei George Florea and Cătălin Buiu. Demonstration video for the secure dis-
persion of robots in a swarm using P colonies. http://dx.doi.org/10.17632/

42by9d2f78.1, 2016.
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Department of Algorithms and their Applications
Faculty of Informatics
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Abstract. In this paper we consider three restricted variants of P sys-
tems with active membranes: (1) P systems using send-out communica-
tion rules only, (2) P systems using elementary membrane division and
dissolution rules only, and (3) polarizationless P systems using dissolu-
tion and unit evolution rules only. We show that every problem in P can
be solved with uniform families of any of these variants using reason-
ably weak uniformity conditions. This, using known results on the upper
bound of the computational power of variants (1) and (3) yields new
characterizations of the class P. In the case of variant (2) we provide
a further characterization of P by giving a semantic restriction on the
computations of P systems of this variant.

Keywords: Membrane Computing, P systems with active membranes, compu-
tational complexity

1 Introduction

P systems with active membranes were introduced in [20]. These P systems
have the possibility of dividing elementary (or even non-elementary) membranes.
It was soon discovered that this feature (combined with maximal parallelism)
makes this variant a rather powerful computational device, and efficient solutions
of problems that are complete in NP [10,20,25,31] (or even in PSPACE [1,29])
were given. In order to establish the connection between classical complexity
classes and P system families, recognizer P systems were introduced in [24].
Since then recognizer P systems are considered as the natural framework to
study the computational power of various classes of P system families. Among
the many research lines in Membrane Computing, one is to find efficient solutions
of computationally hard problems by various types of recognizer P systems with
active membranes (see e.g. [2,3,4,17,18,23]).

It is not too surprising that membrane division is necessary in these systems
to solve computationally hard problems efficiently [31]. However, in [21] Păun
conjectured that polarization is also necessary. More precisely, Păun’s conjecture
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(which is also known as the P conjecture in the literature) sounds as follows:
polarizationless P systems with active membranes working in polynomial time
can solve only problems in P if non-elementary membrane division rules are not
allowed. Although the P conjecture has not been proven yet, there are some
partial results. In [8] it was shown that without dissolution rules these systems
can solve exactly the problems in P. The conjecture was also confirmed in the
following cases: when dissolution rules are allowed, but the P systems can employ
only restricted, so-called symmetric, division rules [12], and when the initial
membrane structure is a linearly nested sequence of membranes, and the system
can employ only dissolution and elementary membrane division rules [30].

It was observed in [13] that the P lower bound in the characterization of P
in [8] comes from the polynomial uniformity of the examined P systems. In fact,
according to [11] the used uniformity condition dominates the computational
power of uniform families of polarizationless P systems with no dissolution rules.
This initiated a sequence of papers where P systems with active membranes
under reasonably tight uniformity conditions were examined [15,16]. Moreover,
several solutions of problems in P with restricted classes of P systems under
tight uniformity conditions were given [5,9,14,15].

In this paper we continue the work in this research line. First we show that
uniform families of P systems with active membranes using send-out communi-
cation rules only can solve every problem in P. Then we show a similar result
when the applicable rules are the elementary membrane division and the disso-
lution rules. The proofs are given by solving a restricted, but still P-complete
variant of the well know HornSat problem, the satisfiability problem of Horn
formulas.

Finally, we show that uniform families of polarizationless P systems with ac-
tive membranes using dissolution and unit rules can simulate polynomial time
Turing machines efficiently (a unit rule is such an evolution rule which intro-
duces exactly one object during its application). This result is stronger than
the one appearing in [6] since there communication and not restricted evolution
rules were used too. In [15] a solution of a P-complete problem was given using
dissolution and restricted evolution rules only, however the presented family of
P systems was semi-uniform.

Using the P upper bound given in [31], our first and third results give new
characterizations of P in terms of Membrane Computing techniques. In our sec-
ond result we use P systems where the initial membrane structure is a linearly
nested sequence of membranes, and during the computation the number of mem-
branes on the deepest level is at most two. It can be seen that the set of those
problems that can be solved by those P systems with active membranes which
have this semantic restriction during their computations are in P. This yields
another characterization of the complexity class P.
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2 Preliminaries

Here we recall the necessary notions used later. Nevertheless, we assume that the
reader is familiar with the basic concepts of formal language theory, propositional
logic, and Membrane Computing techniques (for a comprehensive guide to these
topics see e.g. [7,22,27], respectively). N denotes the set of natural numbers. For
n,m ∈ N, n < m, [n,m] denotes the set {n, n+ 1, . . . ,m}. If n = 1, then [n,m]
is denoted by [m].

Propositional formulas and the HornSat problem. A propositional variable is
a variable whose value can be either true or false. If it is not confusing, we will
often call propositional variables simply variables. We fix an infinite set Var =
{v1, v2, v3, . . .} of variables. For a number n ∈ N,Varn is the set {v1, . . . , vn}. An
interpretation of the variables in Varn is a function I :Varn → {true, false}.

The propositional variables and their negations are called literals. l is a pos-
itive (resp. negative) literal, if l = x (resp. l = ¬x), for some x ∈Var , where ¬
denotes the operation of negation. A clause C is a disjunction of finitely many
pairwise different literals satisfying that there is no x ∈Var such that both x
and ¬x occur in C. A clause C is a positive unit clause if it contains exactly one
positive literal and no negative literals. A formula in conjunctive normal form
(CNF) is a conjunction of finitely many clauses. Let ϕ be a formula in CNF.
We will sometimes consider ϕ as a finite set of clauses, where the clauses are
finite sets of literals. ϕ is satisfiable, if there is an interpretation under which ϕ
evaluates to true. Moreover, ϕ is a Horn formula if every clause in ϕ contains
at most one positive literal.

The HornSat problem sounds as follows: given a Horn formula ϕ, decide
if ϕ is satisfiable. It is known that HornSat is P-complete (see e.g. [19]). Let
Horn3Sat be that restriction of HornSat where every clause of the input
formula can contain at most three literals. Moreover, let Horn3SatNorm be
that restriction of Horn3Sat where the input formula is in the following normal
form: every clause of the formula is either a positive unit clause or it contains
exactly two negative literals and at most one positive literal. For example, x ∧
(¬x∨y)∧ (¬y∨¬z∨u) (x, y, z, u ∈Var) is an instance of Horn3Sat, but not of
Horn3SatNorm, since (¬x ∨ y) neither is a positive unite clause nor contains
exactly two negative literals. However, x∧(¬x∨¬y)∧(¬y∨¬z∨u) is an instance
of Horn3SatNorm.

Next we show that Horn3SatNorm is P-complete. The proof resembles the
standard NP-completeness proof of the 3Sat problem (the 3Sat problem is the
satisfiability problem of those formulas in CNF which can have only clauses with
three literals, see e.g. [28]).

Proposition 1. Horn3SatNorm is P-complete.

Proof. Since this problem is a restriction of HornSat, it is in P. Thus, it
is enough to show that HornSat can be reduced using logarithmic space to
Horn3SatNorm. First we show that HornSat reduces to Horn3Sat. Let
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ϕ be a Horn formula over the variables in Varn (n ∈ N). We construct an
instance ϕ′ of Horn3Sat such that ϕ′ is satisfiable if and only if ϕ is satis-
fiable. Let C be a clause in ϕ. If C has at most three literals, then let C be
a clause of ϕ′. Otherwise, assume that C = x1 ∨ ¬x2 ∨ · · · ∨ ¬xk for some
k ∈ [4, n] and xi ∈ Varn (i ∈ [k]). It can be easily seen that C is satisfiable
if and only if (x1 ∨ ¬x2 ∨ ¬y) ∧ (y ∨ ¬x3 ∨ · · · ∨ ¬xk) is satisfiable, where y is
a new variable, not included in Varn. In this way we can construct the formula
(x1∨¬x2∨¬y1)∧(y1∨¬x3∨¬y2)∧· · ·∧(yk−3∨¬xk−1∨¬xk), which is satisfiable
(overVarn∪{y1, . . . , yk−3}) if and only if C is satisfiable (overVarn). To a clause
with no positive literals one can give a very similar construction. Then we add
these new clauses to ϕ′. Clearly, ϕ′ is satisfiable if and only if ϕ is satisfiable,
and the mapping ϕ 7→ ϕ′ can be carried out by a deterministic Turing machine
using logarithmic space in the size of ϕ.

Next we show that Horn3Sat reduces to Horn3SatNorm. To this end let
ϕ be an instance of Horn3Sat with variables inVarn. We construct an instance
ϕ′ of Horn3SatNorm such that ϕ′ is satisfiable if and only if ϕ is satisfiable.
For every clause C of ϕ, if C corresponds to the restrictions made on the instances
of Horn3SatNorm, then let C be a clause of ϕ′. Otherwise we replace C with
the set C′ of clauses defined as follows:

– if C = ¬x, then let C′ = {¬x ∨ ¬y, y},
– if C = x1 ∨ ¬x2, then let C′ = {x1 ∨ ¬x2 ∨ ¬y, y}, and
– if C = ¬x1 ∨ ¬x2 ∨ ¬x3, then let C′ = {¬x1 ∨ ¬x2 ∨ y,¬y ∨ ¬x3},

where x, x1, x2, x3 ∈Varn and y is always a new variable not used yet during
the construction. Clearly the clauses in C′ always have the desired forms, and ϕ′

is satisfiable if and only if ϕ is satisfiable. Moreover, the described construction
can be carried out by a logarithmic space Turing machine. Thus, since loga-
rithmic space reductions are closed under composition, we have that HornSat
can be efficiently reduced to Horn3SatNorm, which finishes the proof of the
statement.

Turing machines. In this paper we will use that variant of Turing machines
which appears, e.g., in [28]. A (deterministic) Turing machine is a 7-tuple M =
(Q,Σ, Γ, δ, q0, qa, qr) where

– Q is the finite set of states,
– Σ is the input alphabet,
– Γ is the tape alphabet including Σ and a distinguished symbol t 6∈ Σ, called

the blank symbol,
– δ : (Q − {qa, qr}) × Γ → Q × Γ × {−1, 1} is the transition function; the
ith component of δ(q,X) (i ∈ [1, 3], q ∈ Q − {qa, qr}, X ∈ Γ ) is denoted by
proji(δ(q,X)),

– q0, qa, and qr are the initial, accepting, and rejecting states, respectively.

M works on a single infinite tape that is closed on the left-hand side. During
the computation of M , the tape contains only finitely many non-blank symbols,
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and it is blank elsewhere. Let w ∈ Σ∗. The initial configuration of M on w is the
configuration where w is placed at the beginning of the tape, the head points
to the first letter of w, and the current state of M is q0. A computation step
performed by M can be described as follows. If M is in state p and the head of
M reads the symbol X, then M changes its state to q and writes X ′ onto X if
and only if δ(p,X) = (q,X ′, d), for some d ∈ {−1, 1}. Moreover, if d = 1 (resp.
d = −1), then M moves its head one position to the right (resp. to the left) (by
definition, M can never move the head off the left-hand end of the tape even
if the head points to the first cell and d = −1). We say that M accepts (resp.
rejects) w, if M can reach from the initial configuration on w the accepting state
qa (resp. the rejecting state qr). We note here that M can stop only in these
states. The language accepted by M is the set L(M) consisting of those words
in Σ∗ that are accepted by M .

P systems with active membranes. In this paper we consider several restricted
variants of P systems with active membranes. In general, a P system with active
membranes [20] is a construct of the form Π = (Γ,H, µ,w1, . . . , wm, R), where m
is the initial degree of the system, Γ is the alphabet of objects, H is a finite set of
labels of the membranes; µ is a membrane structure consisting of m membranes
and labelled with elements of H; w1, . . . , wm ⊆ Γ ∗ are the initial multisets of
objects placed in the m regions of µ; and R is a finite set of rules defined as
follows:

(a) [a→ v]eh, for e ∈ {+,−, 0}, h ∈ H, a ∈ Γ, v ∈ Γ ∗
(object evolution rules, associated with membranes and depending on the
label and the charge of the membranes, but not directly involving the mem-
branes, in the sense that the membranes are neither taking part in the ap-
plication of these rules nor are they modified by them);

(b) a[ ]e1h → [b]e2h , for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(send-in communication rules, sending an object into a membrane, maybe
modified during this process; also the polarization of the membrane can be
modified, but not its label);

(c) [a]e1h → [ ]e2h b, for e1, e2 ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(send-out communication rules; an object is sent out of the membrane,
maybe modified during this process; also the polarization of the membrane
can be modified, but not its label);

(d) [a]eh → b, for e ∈ {+,−, 0}, h ∈ H, a, b ∈ Γ
(membrane dissolving rules; in reaction with an object, a membrane can be
dissolved, while the object specified in the rule can be modified);

(e) [a]e1h → [b]e2h [c]e3h , for e1, e2, e3 ∈ {+,−, 0}, h ∈ H, a, b, c ∈ Γ
(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with possibly different polariza-
tions; the object a specified in the rule is replaced in the two new membranes
by (possibly new) objects b and c respectively, and the remaining objects are
duplicated).

As it is usual in membrane computing, P systems with active membranes work in
a maximally parallel manner: at each step the system first nondeterministically
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assigns appropriate rules to the objects of the system such that the assigned
multiset S of rules satisfies the following properties: (i) at most one rule from
S is assigned to any object of the system, (ii) a membrane can be the subject
of at most one rule in S, and (iii) S is maximal among the multisets of rules
satisfying (i) and (ii).

We call an evolution rule [a→ v]eh with |v| = 1 a unit rule. A layer is a non-
branching membrane structure, that is a layer has the form [. . . [ ]h1

. . .]hn
(n ≥

1, h1, . . . , hn ∈ H). For two layers µ1 = [. . . [ ]h1
. . .]hj

and µ2 = [. . . [ ]g1 . . .]gk
(j, k ≥ 1, h1, . . . , hj , g1, . . . , gk ∈ H), the composition µ1[µ2] of µ1 and µ2 is the
layer [. . . [[. . . [ ]g1 . . .]gk ]h1 . . .]hj . For improving the readability of the paper, we
will often call a composition of finitely many layers a block.

Recognizer P systems. A recognizer P system [24,26] is a P system Π with a
designated input membrane and having the following properties. The alphabet
Γ of objects has two designated elements yes and no. Every computation of
Π halts and sends to the environment the same object which is either yes or
no, and these objects are sent out in the last step of the computation (if the
examined P system model does not have send-out communication rules, then
the output of the systems appears in the skin membrane). The input of Π is
a multiset over Γ , which is added to the input membrane of the system in the
initial configuration.

Uniform families of P systems. A family Π = {Π(i)}i∈N of recognizer P systems
decides a problem L if, for every instance x of L with length n, starting Π(n)
with an appropriate encoding of x in its input membrane leads to Π(n) sending
into the environment yes if and only if x ∈ L.

We will use uniform families of recognizer P systems to solve problems in P.
Clearly, we should use such a uniformity condition that is reasonably weak to
work with in class P. According to the widely believed fact that Turing machines
using logarithmic space are strictly weaker than Turing machines working in
polynomial time, we will use logarithmic space uniform families of P systems.
We denote by L the family of functions that can be computed by Turing machines
using logarithmic amount of space.

Assume that a family Π = {Π(i)}i∈N of recognizer P systems decides a prob-
lem L. Π is called (L,L)-uniform if and only if (i) there are functions f, cod ∈ L
such that, for every n ∈ N, Π(n) = f(1n) (i.e., the P system Π(n) can be con-
structed by a logarithmic space Turing machine from the unary representation
of n); (ii) for every instance x of L with size n, cod(x) is a multiset encoding x
over the alphabet of objects in Π(n).

For a type F of recognizer P systems, we denote by (L,L)−PMCF the class
of those problems that can be decided by (L,L)-uniform families of P systems of
type F working in polynomial time. AM+out (resp. AM+e,+d) denotes the fam-
ily of P systems with active membranes having send-out communication (resp.
division and dissolution) rules only. Similarly, AM0

+u,+d denotes the family of
polarizationless P systems having unit rules and dissolution rules only.
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3 Results

Here we show that recognizer P systems of type AM+out, AM+e,+d, or
AM0

+u,+d and working in polynomial time are capable to solve every prob-
lem in P. First we consider two solutions of Horn3SatNorm, then we give an
efficient simulation of Turing machines.

3.1 The solution of Horn3SatNorm

By definition, if ϕ is an instance of Horn3SatNorm, then every clause of ϕ is
either a positive unit clause or it has exactly two negative literals. In the rest of
this section by a clause we mean a clause having this property. Using the well
known equivalences of propositional logic, a clause having exactly two negative
literals ¬x and ¬y can be written in the form x ∧ y → ↓ or x ∧ y → z, where z
is a variable, → denotes the operation of implication and ↓ denotes a formula
with constant false truth value. We will often use these expressions to denote
the corresponding clauses of the input formula (in fact, we will often call these
expressions clauses, although strictly speaking they are not clauses). Moreover,
for the sake of simplicity, we will not indicate the sign ∧ of conjunction in the
left-hand side of these expressions.

Let ϕ be an instance of Horn3SatNorm with variables in Varn (n ≥ 1).
Clearly, if ϕ is true in an interpretation I, then I(x) = true must hold for every
positive unite clause {x} in ϕ. Assume now that C = xy → z is a clause of
ϕ, where x, y are variables and z is either a variable or ↓ . We observe that if
I(x) = I(y) = true, then C is true in I if and only if z is true too. That is,
if z = ↓ , then x, y, z cannot be all true in I. We will use these observations in
the following algorithm H3SN, which decides if ϕ is satisfiable or not. Let N (n)
denote the set of those clauses over variables in Varn which contain exactly two
negative literals, and let m = |N (n)|. In the rest of this section we assume a
fixed enumeration c1, . . . , cm of clauses in N (n).

Algorithm H3SN

1. input: ϕ
2. X := {x ∈Varn | x ∈ ϕ} // x is a positive unit clause in ϕ
3. For i = 1 . . . n do
4. For j = 1 . . .m do
5. If cj = xy → u ∈ ϕ and x, y ∈ X then X := X ∪ {u}
6. If ↓ is in X then return no
7. else return yes

To demonstrate the work of H3SN consider the following example (see also the
solution of HornSat in [19]). Let ϕ = x ∧ y ∧ (xy → z) ∧ (xz → ↓), where
x, y, z ∈Varn. Then, initially, X = {x, y}. Since x, y ∈ X and xy → z ∈ ϕ, X
becomes {x, y, z}. Then, since x, z ∈ X and xz → ↓ ∈ ϕ, X becomes {x, y, z, ↓}.
After this the value of X remains the same until H3SN halts. Thus, since ↓ ∈ X,
H3SN outputs no. This is correct as ϕ is unsatisfiable.
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In this section we give two families of P systems with rather restricted sets of
applicable rules to solve the Horn3SatNorm problem in polynomial time. Both
solutions are based on Algorithm H3SN. In these solutions the P systems can-
not employ evolution and send-in communication rules. In addition, in the first
solution dissolution and membrane division rules, while in the second solution
send-out communication rules are also not allowed.

In both solutions the P systems, roughly, work as follows. Let ϕ be an instance
of Horn3SatNorm with variables inVarn (n ≥ 1). The initial membrane struc-
ture consists of n blocks, and the innermost membrane contains cod(ϕ) (that is,
the encoding of ϕ). A block ri corresponds to the ith round of the main loop in
Algorithm H3SN.

For an arbitrary clause C with variables in Varn, cod(ϕ) contains an object

O∃C or O 6∃C (but not both) according to whether C occurs in ϕ or not. Moreover,
for every clause of the form xy → u (x, y ∈ Varn, u ∈ Varn ∪ {↓}), ri has a
layer l whose membranes are indexed by this clause. The objects in the inner
membrane of l go through l (either by send-out communication or by dissolution
rules, according to the used model), and during this the system performs the
following task. It first checks whether all the objects O∃xy→u, O∃x, O∃y , and O 6∃u
were present in the innermost membrane of l. If yes, then the system rewrites
O 6∃u to O∃u. In this way the system can determine which variables of ϕ must be
true in order to make ϕ true in an interpretation. After performing the above
task in all layers of block rn, the skin contains either O∃↓ or O 6∃↓ . If O∃↓ occurs
in the skin, then ϕ cannot be satisfied and the system introduces object no,
otherwise it introduces yes. Notice that while H3SN computes the set of those
variables that must be true in order make ϕ true in an interpretation, the above
described P systems consider these variables as they were positive unit clauses of
the formula. However this behaviour is correct, since if we know that a variable
x should be true in any interpretation that makes ϕ true, then ϕ∧x is satisfiable
if and only if ϕ is satisfiable.

Formally, we encode an instance ϕ of Horn3SatNorm with variables in
Varn as follows. First, let

Σ(n) = {Oe | O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}},

where V (n) = {Vu | u ∈ Varn ∪ {↓}} and C(n) = {Cxy→u | x, y ∈ Varn, u ∈
Varn ∪ {↓}}. Then the encoding of ϕ is cod(ϕ) = {O∃c ∈ Σ(n) | c ∈ ϕ} ∪
{O 6∃c ∈ Σ(n) | c 6∈ ϕ} ∪ {V 6∃↓ }. We note here that technically there is no need to
distinguish in the notation between positive unite clauses and clauses having two
negative literals. Nevertheless, we decided to do so to improve the readability of
the constructions. Since the size of ϕ is clearly polynomial in n, it can be seen
that cod is a function in L.

A solution using send-out communication rules only. Here we solve
Horn3SatNorm with a family Π1 = {Π1(n)}n∈N of recognizer P systems
of type AM+out, where Π1(n) = (Γ (n), H(n), µ(n),W (n), R(n)) is defined as
follows:
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– Γ (n) = Σ(n) ∪ {V ∃+x | x ∈Varn ∪ {↓}} ∪ {yes, no}.
– H = {(xy → u, α) | x, y ∈Varn, u ∈Varn ∪ {↓}, α ∈ {a, b, c}} ∪ {sk | k ∈

[m+ n]} ∪ {skin}.
– µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S = [[[ ]s1 . . .]sm+n ]skin and, for every
i ∈ [n], ri is a block defined as follows. ri = lcm [. . . lc2 [lc1 ] . . . ], where, for
every j ∈ [m], the layer lcj has the form [[[ ](cj ,a)](cj ,b)](cj ,c) (see Fig. 1).

Fig. 1. The initial membrane structure of Π1(n)

– The input membrane is the innermost membrane in the initial membrane
structure.

– W (n) is the sequence of empty initial multisets.
– R consists of the following subsets of rules, where x, y ∈ Varn and u ∈

Varn ∪ {↓}:
(1) [C∃xy→u]0(xy→u,a) → [ ]+(xy→u,a)C

∃
xy→u,

[C∃xy→u]0(xy→u,β) → [ ]0(xy→u,β)C
∃
xy→u,

[C 6∃xy→u]0(xy→u,α) → [ ]−(xy→u,α)C
6∃
xy→u (α ∈ {a, b, c}, β ∈ {b, c}).

These rules are used to initialize the layers in the following sense: an
object representing a clause in ϕ sets the charge of the first membrane in
the corresponding layer to positive, and keeps the neutral charges of the
second and third membranes in that layer, while an object representing
a clause not in ϕ sets the charges of all membranes in the corresponding
layer to negative.

(2) [V ev ]−(xy→u,α) → [ ]−(xy→u,α)V
e
v ,

[Cers→v]
−
(xy→u,α) → [ ]−(xy→u,α)C

e
rs→v

(e ∈ {∃, 6 ∃}, r, s ∈Varn, v ∈Varn ∪ {↓}, α ∈ {a, b, c}).
Every membrane with negative charge lets all of the objects pass through
itself.

(3) [V ∃x ]+(xy→u,a) → [ ]−(xy→u,a)V
∃+
x ,

[V ∃+x ]0(xy→u,b) → [ ]+(xy→u,b)V
∃
x .
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If ϕ has a clause xy → u, that is, the membrane with label (xy → u, a)
has positive charge, and V ∃x exists in this membrane, then these rules are
used to store this information in the positive charge of the membrane
with label (xy → u, b).

(4) [V ∃y ]+(xy→u,b) → [ ]−(xy→u,b)V
∃+
y ,

[V ∃+y ]0(xy→u,c) → [ ]+(xy→u,c)V
∃
y .

If the membrane with label (xy → u, b) has positive charge and V ∃y exists
in this membrane, then these rules are used to store this information in
the positive charge of the membrane with label (xy → u, c).

(5) [V 6∃u ]+(xy→u,c) → [ ]−(xy→u,c)V
∃
u .

The positive charge of the membrane with label (xy → u, c) indicates
that xy → u is a clause of the system and that both variables x and y
has to be true in an interpretation in order to make ϕ true. Thus, with
this rule the system rewrites V 6∃u to V ∃u indicating that u must be also
true to make ϕ true.

(6) [V ∃u ]p(xy→u,α) → [ ]−(xy→u,α)V
∃
u (p ∈ {+, 0}, α ∈ {a, b, c}).

If the system already knows that u must be true to make ϕ true, then
the charges of the corresponding membranes are set to negative.

(7) [V 6∃x ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
x ,

[V 6∃y ]p(xy→u,α) → [ ]−(xy→u,α)V
6∃
y (p ∈ {+, 0}, α ∈ {a, b, c}).

If any of the variables on the left-hand side of a clause xy → u is not
considered to be true yet, then the charges of membranes of the cor-
responding layer are set to negative by these rules, and V ∃u cannot be
introduced by this layer.

(8) [V e↓ ]0sk → [ ]0skV
e
↓ , [V ∃↓ ]0skin → [ ]0skinno, [V 6∃↓ ]0skin → [ ]0skinyes

(k ∈ [m+ n], e ∈ {∃, 6 ∃}).
The first rule is used to move object V ∃↓ or V 6∃↓ towards the skin mem-
brane. When they arrive at the skin, the system sends to the environment
the correct answer.

Correctness, running time, and (L,L)-uniformity. First we observe that during
the computation of Π1(n) the following holds.

1. If all the membranes in a layer l have negative charge, then l does not
contribute to the computation, i.e. all objects pass through the membranes
of l without any change.

2. For every C ∈ C(n), either C∃C or C 6∃C (but not both) occurs in the system
(the same object during the whole computation).

3. For every x ∈ Varn ∪ {↓}, exactly one of V ∃x , V ∃+x or V 6∃x occurs in the

system (except the last step, where V ∃↓ (resp. V 6∃↓ ) is rewritten to no (resp.
yes)). Indeed, the rules that can change an object of this form are rules in
(3)-(5) (not counting the rules that introduce yes or no at the last step of
the computation). Rules in (3) (resp. in (4)) change V ∃x to V ∃+x (resp. V ∃y
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to V ∃+y ) and V ∃+x to V ∃x (resp. V ∃+y to V ∃y ). Rules in (5) remove V 6∃u and

introduce V ∃u . Thus the observation remains true after applying these rules.

4. If an object V ∃x occurs in the systems, then V 6∃x won’t be introduced during
the computation.

Now consider a layer lxy→u (x, y ∈Varn, u ∈Varn ∪ {↓}). For every object
in Γ \ {yes, no} passing through the layer the following holds.

5. C∃xy→u, C 6∃xy→u, V 6∃x , V 6∃y , and V ∃u are unchanged (but they may change the
polarizations of the membranes in the layer).

6. V ∃x and V ∃y can change only when the corresponding membrane’s charge is
positive (first rules in (3) and (4)). However, if they change, then the second
rules in (3) and (4) will be applied in the next step.

7. V 6∃u may be changed to V ∃u by the rules in (5).

8. Any other objects are unchanged (and they don’t change any of the polar-
izations in the layer). Moreover, they can only pass through membranes with
negative polarization in this layer.

Fig. 2. One of the possible computations in a layer lxy→u of Π1(n) when it contains
C∃

xy→u, V ∃
x , V 6∃

y , and V ∃
u .
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Using these observations and also the comments given after the rules, one can
see that the following holds. At the beginning of the computation every mem-
brane in lxy→u has neutral charge. According to the objects that pass through
this layer we can distinguish the following cases.

1. All of the objects C∃xy→u, V ∃x , V ∃y , and V 6∃u pass through the membranes of

lxy→u. Then the system rewrites the object V 6∃u to V ∃u .
2. Any of the objects C 6∃xy→u, V 6∃x , V 6∃y , or V ∃u passes through the membranes of
lxy→u. Then the charge of every membrane in lxy→u is set to negative, and
thus this layer cannot contribute to the computation. (Notice that in this
case the computation is not deterministic but confluent, i.e., all the possible
computations in the layer yield the same result. For an example of such a
computation see Fig. 2.)

It follows that the objects passing through the layer lxy→u simulate step
5 of Algorithm H3SN. Thus, sending objects through a block corresponds to
performing steps 4−5 of this algorithm. Since steps 4−5 are performed n times
by the algorithm, the work of the P system in the n blocks corresponds to the
work of the algorithm. Thus, V ∃↓ or V 6∃↓ eventually appears in membrane s1. In
the next m+n steps this object gets to the skin by rules in (8). There the system
computes yes or no accordingly, which is then sent to the environment. It can be
seen that during this computation all the other objects occurring in the system
arrive to membrane s1, and the computation halts.

This justifies the correctness of Π1(n). Since Π1(n) has polynomial number
of objects in the initial configuration and no evolution rules are performed during
its work, sending all the objects through a block takes polynomial steps. Thus
the running time of Π1(n) is also polynomial.

It can be seen that all the ingredients of Π1(n) can be enumerated by a
logarithmic space Turing machine. Thus, using that Horn3SatNorm is P-
complete, we get the following result.

Theorem 1. P ⊆ (L,L)−PMCAM+out .

A solution using elementary membrane division and dissolution rules
only. In this subsection we solve Horn3SatNorm with a family Π2 =
{Π2(n)}n∈N of recognizer P systems of type AM+e,+d. The solution is similar to
the one given in the previous subsection, however, there is a substantial differ-
ence: here the presence of the necessary objects to simulate step 5 of Algorithm
H3SN are checked by the application of membrane division rules. Consequently,
those objects that do not take part in the simulation are duplicated several times.
In particular, at certain points of the computation the P system has multiple
copies of objects of the form V 6∃x . However, the correctness of the computation
requires that at the beginning of the work in a layer there is at most one copy
of objects of this form. Therefore we will apply special layers that will remove
those objects that could cause the system to give incorrect results. The following
is the formal definition of Π2(n) = (Γ (n), H(n), µ(n),W (n), R(n)):
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– Γ (n) = Σ(n) ∪ {w,w1, w2,#, $} ∪ {yes, no}.
– H(n) = {skin, s} ∪ {(xy → u, α) | x, y ∈ Varn, u ∈ Varn ∪ {↓}, α ∈
{a, b, c, d}} ∪ {dO | O ∈ V (n) ∪ C(n) ∪ {w}}.

– µ(n) is defined as follows (see also Fig. 3). Let C = xy → u be a clause
(x, y ∈Varn, u ∈Varn ∪ {↓}) and lC be the layer DC [MC ], where DC and
MC are defined as follows:

MC = [ [ [ [ [ [ ](xy→u,a)](xy→u,b)]dw ](xy→u,c)]dw ](xy→u,d)

and DC is a layer containing, for every O ∈ V (n)∪C(n), the membrane [ ]dO
fifteen times if O 6= Vu, and once, otherwise. Intuitively, MC is that part of
the layer which is responsible to simulate step 5 in Algorithm H3SN, and
layer DC is used (together with membranes with label dw in MC) to remove
those objects that are produced by the used division rules, but should be
removed in order to keep the behaviour of the system correct.
To finish the construction, let µ(n) = S[rn[rn−1[. . . r2[r1] . . . ]], where S =
[[ ]s]skin and, for every i ∈ [n], ri is the block lcm [. . . lc2 [lc1 ] . . . ].

Fig. 3. The initial membrane structure of Π2(n)
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– The input membrane is the innermost membrane in the initial membrane
structure.

– W (n) is a sequence of empty initial multisets.
– R consists of the following subsets of rules, where x, y ∈ Varn and u ∈

Varn ∪ {↓}:
(1) [V 6∃u ]0(xy→u,a) → [w]−(xy→u,a)[#]−(xy→u,a),

[V ∃u ]0(xy→u,a) → [w1]−(xy→u,a)[#]−(xy→u,a).

These rules are used to decide if V 6∃u or V ∃u is present in a membrane
with label (xy → u, a). If V 6∃u is present, then the system introduces
w which indicates that the system should work further to decide if V ∃u
should be introduced or not. Object w1 indicates that V ∃u is present in
the system and thus it should not be introduced later. # indicates that
the membrane containing it is not used effectively in the computation.

(2) [w]−(xy→u,a) → w, [w1]−(xy→u,a) → w1,

[#]−(xy→u,a) → $.

These rules pass the information computed by rules in (1) to the mem-
brane labelled with (xy → u, b). $ is a dummy object not used later.

(3) [C∃xy→u]0(xy→u,b) → [C∃xy→u]+(xy→u,b)[C
∃
xy→u]+(xy→u,b),

[C 6∃xy→u]0(xy→u,b) → [C 6∃xy→u]−(xy→u,b)[C
6∃
xy→u]−(xy→u,b).

These rules decide if object C∃xy→u or C 6∃xy→u exists in the system. The
result is stored in the polarizations of the new membranes.

(4) [w]+(xy→u,b) → w, [w]−(xy→u,b) → w2,

[w1]+(xy→u,b) → w1, [w1]−(xy→u,b) → w1.

These rules introduce objects that will control the computation accord-
ing to the information computed by the previous subsets of rules. For
example, if w and C 6∃xy→u is present in the inner membrane, then w2

is introduced. In this case V ∃u will not be introduced at the end of the
computation in this layer (see rules in (8)).

(5) [V ∃y ]0(xy→u,c) → [V ∃y ]+(xy→u,c)[V
∃
y ]+(xy→u,c),

[V 6∃y ]0(xy→u,c) → [V 6∃y ]−(xy→u,c)[V
6∃
y ]−(xy→u,c).

These rules decide if object V ∃y or V 6∃y exists in the system. The result is
stored in the polarizations of the new membranes.

(6) [w]+(xy→u,c) → w, [w]−(xy→u,c) → w2,

[w1]+(xy→u,c) → w1, [w1]−(xy→u,c) → w1,

[w2]+(xy→u,c) → w2, [w2]−(xy→u,c) → w2.

These rules introduce objects that will control the computation according
to the information computed by the previous subset of rules.

(7) [V ∃x ]0(xy→u,d) → [V ∃x ]+(xy→u,d)[V
∃
x ]+(xy→u,d),

[V 6∃x ]0(xy→u,d) → [V 6∃x ]−(xy→u,d)[V
6∃
x ]−(xy→u,d).
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These rules decide if object V ∃x or V 6∃x exists in the system. The result is
stored in the polarizations of the new membranes.

(8) [w]+(xy→u,d) → V ∃u , [w]−(xy→u,d) → V 6∃u ,

[w1]+(xy→u,d) → V ∃u , [w1]−(xy→u,d) → V ∃u
[w2]+(xy→u,d) → V 6∃u , [w2]−(xy→u,d) → V 6∃u .

These rules are used to handle the different cases of possible computa-
tions in a layer. For example, w indicates that at the beginning of the
computation in a layer the system contained objects V 6∃u , C∃xy→u, and

V ∃y .

(9) [Oe]0dO → $, [w]0dw → $, [wi]
0
dw
→ $

(O ∈ V (n) ∪ C(n), e ∈ {∃, 6 ∃}, i ∈ [2]).
These rules are used to remove certain objects from the system.

(10) [V 6∃↓ ]0s → [no]−s [$]−s , [V ∃↓ ]0s → [yes]−s [$]−s , [κ]−s → κ (κ ∈ {yes, no}).
These rules are used to send out the computed answer to the environ-
ment.

Correctness, running time, and (L,L)-uniformity. First we observe that during
the computation of Π2(n) the following holds.

1. The membrane structure has the form [. . . [M ]h1
. . .]hk

(h1, . . . , hk ∈ H(n)),
where M is either a membrane or it is of the form [ ]g1 [ ]g2 (g1, g2 ∈ H(n)),
and

2. objects occur only in the innermost membranes.

The correctness of the system follows from the following lemma.

Lemma 1. Let C = xy → u (x, y ∈ Varn, u ∈ Varn ∪ {↓}) and consider the
layer lC = DC [MC ]. Assume that, for every O ∈ C(n)∪ V (n), either one copy of
O∃ or one copy of O 6∃ occurs in lC. Let O be an object in lC. Depending on O
the following holds:

1. If O ∈ Σ(n) − {V 6∃u }, then after dissolving all the membranes in lC, Π2(n)
contains exactly one copy of O.

2. If O = V 6∃u and lC contains all of the objects C∃C , V ∃x , and V ∃y , then after

dissolving all the membranes in lC, Π2(n) contains no V 6∃u and exactly one
copy of V ∃u .

3. If O = V 6∃u and lc contains C 6∃C , V 6∃x , or V 6∃y , then after the work in lC Π2(n)

contains exactly one copy of V 6∃u .

Proof. By assumption, lC contains exactly one copy of O. Then Statement 1 can
be seen by distinguishing the following two sub-cases:
Case 1. O 6= V ∃u . Then during the work in MC , O is duplicated by the corre-
sponding rules rules in (1), (3), (5), and (7), and the other rules are not applied
to O in MC . This yields sixteen copies of O in DC . Out of these copies fifteen
ones are removed during the computation in DC .
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Case 2. O = V ∃u . Then the second rule in (1) removes first V ∃u and introduces
one copy of w1. After this, membrane (C, a) is dissolved using rules in (2). In the
next two steps, w1 is duplicated first due the division of membrane (C, b) by rules
in (3), then the yielded membranes are dissolved by rules in (4). Thus, at this
point of the computation two copies of w1 are in membrane dw. However, in the
next step one copy is removed due to the corresponding rule in (9). After this,
membrane (C, c) is divided (rules in (5)) and the new membranes are dissolved
(rules in (6)). At this point, two copies of w1 are in membrane dw, and one copy
is removed by the corresponding rule in (9). Finally, w1 is duplicated by rules
in (7), and then the two copies of w1 introduce two copies of V ∃u . During the
dissolution of membranes in DC one copy of V ∃u is removed which proves the
statement.

Statement 2 can be seen as follows. The computation starts with removing
the object V 6∃u and introducing one w (first rule in (1)). Then the new membranes
with label (C, a) are dissolved by the corresponding rules in (2). In membrane
(C, b) the first rule of (3) is applied and thus w is duplicated. At this point
membranes with label (C, b) have positive charges, thus only the first rule in (4)
can be applied. After this the corresponding rule in (9) removes one copy of w.
During the next step the first rule in (5) is applied, and then only the first rule
in (6) can be used. Again, one copy of w is removed by the corresponding rule
in (9). Then the first rule in (7) divides membrane (C, d), w is again duplicated,
and by the first rule in (8) each w introduces one copy of V ∃u . During the work
in DC , one copy of V ∃u is removed.

The system has several different computations in the case of Statement 3.
We discuss here only one of them, the remaining ones can be treated similarly.
Assume for example that lC contains C∃C and V 6∃y . Then the computation goes
in the same way as in the case of Statement 2 until the application of the
corresponding dissolution rules in (4). But now the second rule in (5) is applied,
and thus, in the next step, only the second rule in (6) can be applied. Therefore
here two copies of w2 are introduced. Then the computation continues similarly
as in Case 2 in the proof of Statement 1. However here, when rules from (8)
are applied the system has two copies of w2, and thus two copies of V 6∃u are
introduced by the fifth and sixth rules in (8). One of these copies is eliminated
during the work in DC .

Clearly, the initial configuration of Π2(n) satisfies the conditions of Lemma
1. Then, by the iterated application of Lemma 1, we get that the computation
in a layer lC in a block rk (k ∈ [n]) corresponds to the step 5 of Algorithm
H3SN when i = k and cj = C. Therefore, the the whole computation of Π2(n)
corresponds to the complete work of this algorithm. This justifies the correctness
of Π2(n).

Since Π2(n) has polynomial number of membranes in layer lC , and in lC the
number of the applied division rules is constant, we have that dissolving all the
membranes in lC takes polynomial time. As in the initial configuration there are
n blocks and each block has polynomial number of layers, it follows that the
running time of Π2(n) is also polynomial.
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Finally, it can be seen that all the ingredients of Π2(n) can be enumer-
ated by a logarithmic space Turing machine. This, using the P-completeness of
Horn3SatNorm yields the following theorem.

Theorem 2. P ⊆ (L,L)−PMCAM+e,+d
.

3.2 Simulating Turing Machines

Here we show that, for every polynomial time Turing machine M , an (L,L)-
uniform family Π3 of polarizationless recognizer P systems can be constructed
such that the members of Π3 can simulate the work of M efficiently using only
dissolution and unit rules.

Let M = (Q,Σ, Γ, δ, q0, qa, qr) be an f(n)-time Turing machine, for some
polynomial f(n). Notice that M can use at most f(n) cells of its tape during its
computations. Let k = |Q| and m = |Γ |. Assume that Q = {s1, . . . , sk}, where
s1 = q0, sk−1 = qa and sk = qr. Likewise, assume that Γ = {X1, . . . , Xm}, where
Xm = t. The idea of the simulation is the following. The initial membrane
structure µ is a composition of f(n)+1 blocks (see Fig. 4). The input membrane
is the innermost membrane. During the simulation of the tth step of M , the
objects in the innermost membrane will dissolve all the membranes in the tth
block as follows. Assume that after t− 1 steps M is in state si (i ∈ [k − 2]), the
position of the head is p, and the head scans Xj . Then the innermost membrane
of the tth block contains an object O that represents si and p, and another object
O′ representing Xj on the pth position of the tape. The blocks are composed
of k ·m · f(n) membranes (that is, in every block, for every state–tape symbol–
position triple there is a corresponding membrane). During the simulation of the
tth step of M , O dissolves all the membranes that correspond to a state si′ with
i′ < i or a position p′ < p. Meanwhile O′ evolves using a counter and at the
appropriate time step it starts to dissolve all the membranes corresponding to
si, p, and tape symbol Xj′ with j′ < j. After this the simulation of one step
of M is performed using the value δ(si, Xj). Then the remaining membranes in
the tth block are dissolved, and the system continues with the simulation of the
next step of M .

Construction of the P system. The uniform family of P systems that will perform
the above described simulation is defined as follows. Let w = a1 . . . an be an input
of M (a1, . . . , an ∈ Σ) and N = f(n) · k ·m. Let cod(w) be a multiset over the
alphabet

Σ(n) = {(Xj , p, t)
(c), (si, p, t)

(c′) |
j ∈ [m], i ∈ [k], p ∈ [f(n)], t ∈ [0, f(n)], c ∈ [0, N ], c′ ∈ [0, N +m]}

defined as follows: cod(w) = {(a1, 1, 0)(0), . . . , (an, n, 0)(0)} ∪ {(t, n+1, 0)(0), . . . ,
(t, f(n), 0)(0)}∪(s1, 1, 0)(0). Intuitively, an object (Xj , p, t)

(c) in Σ(n) represents
the fact that after t steps M has Xj on the pth position of its tape. We call these

objects position objects. Similarly, an object (si, p, t)
(c′) represents the fact that
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after t steps M is in state si and the head points to the pth position of the
tape. We call these objects state objects. The indexes c, c′ are counters used for
technical reasons. It can be seen that cod ∈ L.

Let Π3 = {Π3(n)}n∈N be a uniform family of P systems, where Π3(n) =
(Γ (n), H(n), µ(n),W (n), R(n)) is defined as follows:

– Γ (n) = Σ(n) ∪ {yes, no}.
– H(n) = {(si, p,Xj , t) | i ∈ [k], p, t ∈ [f(n)], j ∈ [m]}.

Intuitively, a label (si, p,Xj , t) corresponds to the following configuration of
M after t steps on w: the current state is si, the position of the head is p, and
the scanned symbol is Xj . We will often call si, p, and t the state, position,
and time labels of the corresponding membrane, respectively.

– µ(n) is a composition S[rf(n)[. . . [r1]]] of blocks, where S = [ ]skin, and a
block rt (t ∈ [f(n)]) is a composition of layers defined as follows. For every
i ∈ [k] and p ∈ [f(n)], let lsi,p,t = [. . . [ ](si,p,X1,t) . . .](si,p,Xm,t), and let
rt = lsk,f(n),t[. . . [lsk,1,t[. . . [ls1,f(n),t[. . . [ls1,1,t] . . .]] . . .]] . . .].

Fig. 4. The initial membrane structure of Π3(n)

– The input membrane is the innermost membrane in µ(n).
– W (n) is a sequence of empty initial multisets.
– R consists of the following sets of rules:

(1) [(si, p, t)
(0)](si′ ,p′,Xj ,t+1) → (si, p, t)

(0)

(j ∈ [m], i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n)− 1], and i′ < i or
p′ < p).
These rules are used to find the first such membrane whose state and
position labels correspond to the state and position stored in the state
object.

(2) [(Xj , p, t)
(c) → (Xj , p, t)

(c+1)](si,p′,Xj′ ,t+1)

(j, j′ ∈ [m], i ∈ [k], p, p′ ∈ [f(n)], t ∈ [0, f(n)− 1], c ∈ [0, N − 1]).
These rules are used to increment the counter c in the position objects.
When this counter equals to N , the system can start to use rules in (3).
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(3) [(Xj , p, t)
(N)](si,p,Xl,t+1) → (Xj , p, t)

(N),

[(Xj , p, t)
(N) → (Xj′ , p, t+ 1)(0)](si,p,Xj ,t+1),

[(Xj , p
′, t)(N) → (Xj , p

′, t+ 1)(0)](si,p,X1,t+1)

(j, l ∈ [m], l < j, i ∈ [k − 2], p, p′ ∈ [f(n)], p 6= p′, t ∈ [0, f(n)− 1], and
Xj′ = proj2(δ(si, Xj))).
If the position stored in an object (Xj , p, t)

(N) corresponds to the position
label of the current membrane, then this object starts to dissolve the
membranes until a membrane whose label stores Xj is found. When
this membrane is found, (Xj , p, t)

(N) evolves according to the value of
δ(si, Xj), its counter is reset, and its component t is incremented. Those
position objects that store a different position than the position label
of the current membrane evolve immediately such that their counter is
reset and their component t is incremented. Notice that after performing
the computations by these rules, the position objects have no impact on
the computation in block rt+1.

(4) [(si, p, t)
(c) → (si, p, t)

(c+1)](si,p,Xl,t+1),

[(si, p, t)
(N+m) → (si′ , p

′, t+ 1)(0)](si,p,Xl,t+1)

(i ∈ [k− 2], i′ ∈ [k], p ∈ [f(n)], t ∈ [0, f(n)− 1], c ∈ [N +m− 1], l ∈ [m],
si′ = proj1(δ(si, Xl)), p

′ = max{p+ proj3(δ(si, Xl)), 1}).
The counter of the state object is incremented using the first rule. Until
the counter reaches N + m, the appropriate position object can find
the corresponding membrane using rules in (3). Then the state object
evolves according to the value of the transition function of M . Moreover,
its counter is reset and its component t is incremented.

(5) [(si, p, t+ 1)(0)](si′ ,p′,Xj ,t+1) → (si, p, t+ 1)(0)

(i ∈ [k − 2], i′ ∈ [k], p, p′ ∈ [f(n)], j ∈ [m], t ∈ [0, f(n)− 1]).
After simulating a step of M using rules in (1)-(4), the remaining mem-
branes in block rt+1 are dissolved by these rules.

(6) [(sk−1, p, t)
(0) → yes]h, [(sk, p, t)

(0) → no]h,
[yes]h′ → yes, and [no]h′ → no
(p, t ∈ [f(n)], h ∈ H(n), h′ ∈ H(n)− {skin}).
These rules are used to produce the answer of Π3(n) according to which
halting state is reached by M on the input.

Correctness, running time, and (L,L)-uniformity. Let w = a1 . . . an be an input
of M (a1, . . . , an ∈ Σ). We show that Π3(n) produces yes started with cod(w)
in its input membrane if and only if w ∈ L(M). The work of Π3(n) can be
described as follows. Initially, the object (s1, 1, 0)(0) (representing that M starts
its work in its initial state and the head is positioned to the first letter of the
input) is in the innermost membrane of block r1. Now assume that Π3(n) has
already simulated t steps of M , that is, the innermost membrane of Π3(n) is
the most deeply nested membrane of block rt+1, and this membrane contains an
object (si, p, t)

(0), for some i ∈ [k] and p ∈ [f(n)] (see Fig. 5). If i ∈ [k−1, k], i.e.,
M has reached one of its halting states, then Π3(n), using rules in (6) computes
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the answer of the system yes or no accordingly. Otherwise, rules from (1) are
applied until a membrane with label (si, p,X1, t+ 1) is reached. Meanwhile, the
counter c in position objects is incremented using rules in (2). By the time this
counter becomes N , the corresponding membrane is reached by the rules in (1).
Now those position objects that store different positions than p evolve by the
third rule in (3) to such objects that will be used next time only in the next
block rt+2 (i.e., in the simulation of the next step of M).

Concerning the position object storing p, assume that this object is (Xj , p, t)
(N).

Then (Xj , p, t)
(N) is used to find that membrane in layer lsi,p,t+1 whose label

contains Xj . When this membrane is found, (Xj , p, t)
(N) evolves according to the

transition function of M . Moreover, its counter is reset and its time component
is incremented. Thus this object is not used any more in this block.

Meanwhile, rules in (4) are used to increment the counter c of (si, p, t)
(c).

By the time this counter becomes N + m, the position object (Xj , p, t)
(N) has

reached the membrane it searched for. Now the second rule in (4) is used to
produce object (si′ , p

′, t+ 1)(0) where si′ and p′ are calculated according to the
transition function of M . Finally, (si′ , p

′, t+1)(0) is used to dissolve the remaining
membranes of rt+1. If this is done, the system is ready to simulate the next step
of M . With this we have seen that Π3(n) simulates correctly the computation
of M on w.

It can be seen that dissolving a block in the membrane structure takes O(N)
steps and N = O(f(n)). Moreover, Π3(n) has f(n) blocks. Thus the running
time of the system is O(f2(n)), that is, polynomial in n. The (L,L)-uniformity
of Π3 follows from the observation that the size of Π3(n) is also polynomial in
n. Thus we have the following result.

Theorem 3. P ⊆ (L,L)−PMCAM0
+u,+d

.

As we have observed on page 151, our solution of Horn3SatNorm by P
systems of type AM+e,+d is such that the number of membranes occurring
on the same level in the membrane structure is at most two during the whole
computation of the system. Let k ≥ 1. We say that a P system Π is k-bounded, if
the number of membranes occurring on the same level in the membrane structure
is at most k in every configuration of each computation of Π. For a type F of
P systems, denote (L,L) − PMCF≤k

the set of those problems that can be
decided in polynomial time by such (L,L)-uniform families of P systems of type
F which have k-bounded members only. Denote AM−e those P systems with
active membranes that do not employ membrane division rules. It was shown in
[31] that PMCAM−e

⊆ P. It can be seen by the generalization of the proof of
this result that (L,L)−PMCAM≤2

⊆ P also holds. Using these and the results
obtained in the paper we can give the following new characterizations of P.

Corollary 1. P = (L,L)−PMCAM+out
= (L,L)−PMCAM+e,+d,≤2

= (L,L)−
PMCAM0

+u,+d
.
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Fig. 5. Simulating the (t + 1)th step of a TM by Π3(n) (c and c′ are appropriate
counter in [N +m])
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4 Conclusions

In this paper we have shown that uniform families of the following restricted
variants of P systems with active membranes can solve all problems in P: (1)
P systems where only send-out communication rules are used, (2) P systems
where only elementary membrane division and dissolution rules are used, and (3)
polarizationless P systems where only dissolution and unit rules are used. Using
the obtained results concerning variants (1) and (3), and known results about the
upper bound on the power of these variants we could give new characterizations
of P in terms of Membrane Computing techniques.

It remained an open question if the variant (2) could solve problems outside of
P. It is known that without polarizations of the membranes this is not possible
[30]. It is also an open question if these systems can solve all problems in P
when polarizations of the membranes are not allowed. Nevertheless, we could
give another characterization of P using variant (2) where we made a simple
semantic restriction on the computations of this variant.
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20. Păun, Gh.: P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics 6(1) (2001) 75–90
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23. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Trading Polarization for Bi-stable
Catalysts in P Systems with Active Membranes. In: Mauri, G., Păun, Gh., Pérez-
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Abstract. A kernel P system (kP system, for short) integrates in a coherent and elegant
manner many of the P system features most successfully used for modelling various applica-
tions and, consequently, it provides a framework for analyzing these models. In this paper,
we illustrate the modelling capacity of kernel P systems by providing a number of kP system
models for sorting algorithms. Furthermore, the problem of testing systems modelled as kP
systems is also discussed and a test generation method based on automata is proposed. We
also demonstrate how formal verification can be used to validate that the given models work
as desired.

1 Introduction

Membrane systems were introduced in [28] as a new natural computing paradigm inspired by
the structure and distribution of the compartments of living cells, as well as by the main bio-
chemical interactions occurring within compartments and at the inter-cellular level. They were
later also called P systems. An account of the basic fundamental results can be found in [29] and a
comprehensive description of the main research developments in this area is provided in [30]. The
key challenges of the membrane systems area and a discussion on some future research directions,
are available in a more recent survey paper [21].

In recent years, significant progress has been made in using P systems to model and simulate
systems and problems from various areas. However, in order to facilitate the modelling, in many
cases various features have been added in an ad-hoc manner to these classes of P systems. This
has led to a multitude of P systems variants, without a coherent integrating view. There have
been investigations aiming to produce unifying approaches for several variants of P systems [14,
13], looking mainly at the computational aspects, syntax and semantics. The concept of kernel P
systems (kP systems) [18, 19] integrates in a coherent and elegant manner many of the P system
features most successfully used for modelling various applications and provides a generic framework
for specifying and analyzing these models. Furthermore, the expressive power of these systems
has been illustrated by a number of representative case studies [20, 19]. The kP system model is
supported by a modelling language, called kP-Lingua, capable of mapping a kP system specification
into a machine readable representation. Furthermore, kP systems are supported by a software
framework, kPWorkbench [22], which integrates a set of related simulation and verification tools
and techniques.

Another complementary method to simulation and verification is testing, a major activity in the
lifecycle of software systems. In practice, software products are almost always validated through
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testing. Testing has been discussed for cell-like P systems and various strategies, such as rule
coverage based and automata based techniques have been proposed [17, 25]. Until now, however,
testing has not been discussed in the context of kP systems.

In this paper we further illustrate the modelling capacity of kP systems by providing a number
of kP system models for sorting algorithms. Furthermore, the problem of testing and formally
verifying systems modelled as kP systems is also discussed.

The key contributions of the paper are: (a) illustrate the modelling capability of kP systems by
implementing a number of sorting methods - the method presented in Section 3.1 is an extension of
the approach introduced in [18, 19] which includes a stopping condition, whereas the other sorting
methods are new; (b) integrate the kP systems with a test generation method based on automata;
and (c) formally verifying the sorting problems using the kPWorkbench environment.

2 kP Systems - Main Concepts and Definitions

We consider that standard P system concepts such as strings, multisets, rewriting rules, and com-
putation are well-known and refer to [29] for their formal notations and precise definitions. The
kP system concepts and definitions introduced below are from [18, 19]; some are slightly changed
and this will be mentioned.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, σi), 1 ≤ i ≤ s,
consists of a set of rules, Ri, and an execution strategy, σi, defined over Lab(Ri), the labels of the
rules of Ri.

Remark 1. The compartments that appear in the definition of the kP systems will be instantiated
from these compartment types. The types of rules and the execution strategies will be discussed
later.

Definition 2. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the initial membrane structure, which is
a graph, (V,E), where V are vertices indicating components, and E edges; Ci = (ti, wi), 1 ≤ i ≤ n,
is a compartment of the system consisting of a compartment type ti from T and an initial multiset,
wi over A; io is the output compartment where the result is obtained.

2.1 kP System Rules

Each rule r may have a guard g and its generic form is r {g}. The guards are constructed using
multisets over A, as operands, and relational and Boolean operators. Let us first introduce some
notations.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number of objects a
occurring in w. Let us denote Rel = {<,≤,=, 6=,≥, >}, the set of relational operators, γ ∈ Rel, a
relational operator, and an a multiset. We first introduce an abstract relational expression.

Definition 3. If g is an abstract relational expression γan and w a multiset, then g applied to w
denotes the relational expression |w|aγn; g is true with respect to the multiset w, if |w|aγn is true.

One can consider the Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (disjunction).
An abstract Boolean expression is either an abstract relational operator or if g and h are abstract
Boolean expressions then ¬g, g ∧ h and g ∨ h are abstract Boolean expressions. The concept of
a guard is a generalisation of the promotor and inhibitor concepts utilised by some variants of P
systems.
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Definition 4. If g is an abstract Boolean expression containing gi, 1 ≤ i ≤ n, abstract relational
expressions and w a multiset, then g applied to w, denoted gw, means the Boolean expression
obtained from g by applying gi, 1 ≤ i ≤ n, to w. The guard g is true with respect to the multiset
w, if the Boolean expression gw is true.

Example 1. If g is the guard ≥ a5∧ ≥ b3∨¬ > c and w a multiset, then gw is true if it has at least
5 a′s and 3 b′s or no more than one c.

If r {g} denotes a rule then its guard, g, is defined by an abstract Boolean expression. A rule
may or may not have a guard. A rule r {g} is applicable to a multiset w when the left-hand side
of r is contained into w and gw is true.

Definition 5. A rule from a compartment Cli = (tli , wli) will have one of the following types:

– (a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and tj indicates a
compartment type from T – see Definition 2 – with instance compartments linked to the current
compartment; tj might also indicate the type of the current compartment, tli , (in this case it
is not present on the right hand side of the rule); if a link does not exist (i.e., there is no link
between the two compartments in E) then the rule is not applied; if a target, tj, refers to a
compartment type that has more than one instance connected to Cli , then one of them will be
non-deterministically chosen;

– (b) structure changing rules; the following types of rules are considered:
• (b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},

where x ∈ A+ and yj ∈ A∗, 1 ≤ j ≤ p; the compartment Cli will be replaced by p
compartments; the j-th compartment, instantiated from the compartment type tij contains
the same objects as Cli , but x, which will be replaced by yj; all the links of Cli are inherited
by each of the newly created compartments;
• (b2) membrane dissolution rule: []tli → λ {g};

the compartment Cli will be destroyed together with its links;
• (b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};

the current compartment is linked to a compartment of type tlj and x is transformed into
y; if more than one instance of the compartment type tlj not yet linked to tli exist then one
of them will be non-deterministically picked up; g is a guard that refers to the compartment
instantiated from the compartment type tl1 ;
• (b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};

is the opposite of link creation and means that the compartments are disconnected.

The membrane division is defined slightly differently here compared to [18, 19], where each yj ,
1 ≤ j ≤ p, is composed of objects with target compartments.

2.2 kP System Execution Strategies

In kP systems the way in which rules are executed is defined for each compartment type t from T
– see Definition 1 and Remark 1. As in Definition 1, Lab(R) is the set of labels of the rules R.

Definition 6. For a compartment type t = (R, σ) from T and r ∈ Lab(R), r1, . . . , rs ∈ Lab(R),
the execution strategy, σ, is defined by the following

– σ = λ, means no rule from the current compartment will be executed;
– σ = {r} – the rule r is executed once;
– σ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be chosen non-deterministically and

executed; if none is applicable then none is executed; this is called alternative or choice;
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– σ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times ( arbitrary parallelism);
– σ = {r1, . . . , rs}> – the rules are executed according to maximal parallelism strategy;
– σ = σ1& . . .&σs, means executing sequentially σ1, . . . , σs, where σi, 1 ≤ i ≤ s, describes any

of the above cases, namely λ, one rule, a choice, arbitrary parallelism or maximal parallelism;
if one of σi fails to be executed then the rest is no longer executed;

– for any of the above σ strategy only one single structure changing rule is allowed.

Arbitrary parallelism and maximal parallelism for rewriting and communication rules, as well
as for structure changing rules (cell division, dissolution), are discussed in [30].

Remark 2. In certain cases the operator & will be ignored and the sequential execution will be
denoted as σ = σ1 . . . σs.

3 Sorting with kP Systems

Sorting is a central topic in Computer Science (see [26]). A variety of approaches to sorting have
been investigated, for different algorithms, and with different P system models. A first approach
was [3], in which a BeadSort algorithm was implemented with tissue P systems. Another approach
was [6], in which algorithms inspired from sorting networks were implemented using P systems with
communication. Other papers ([1], [31]) use different types of P systems, and refine the sorting
problem to sorting by ranking. A first overview of sorting algorithms implemented with P systems
was [2]. A dynamic sorting algorithm was proposed in [7]. The bitonic sort was implemented with
P systems [8], spiking neural P systems were used for sorting [10], other network algorithms were
implemented using P systems [9]. Another overview of sorting algorithms implemented with P
systems is provided by [11]. First implementations of sorting with kP systems were proposed in
[18, 19].

The problem can be stated as follows: suppose we want to sort x1, · · · , xn, n ≥ 1, in ascending
order, where xi, 1 ≤ i ≤ n, are positive integer values. Each such number, xi, 1 ≤ i ≤ n, will
be represented as a multiset axi

i , 1 ≤ i ≤ n, where ai is an object from a given set. In the next
sections we will present two sorting algorithms using different representations of the sequence of
positive integer numbers. More precisely, we start with an algorithm already studied in several
other papers, [6, 2] for various types of P systems. Here we implement it using kP systems, by
representing each element xi by axi , 1 ≤ i ≤ n. The multisets axi , 1 ≤ i ≤ n, are stored in separate
compartments, Ci, 1 ≤ i ≤ n (Section 3.1). In Section 3.2 these positive integer numbers are
represented by axi

i , 1 ≤ i ≤ n, and stored in one compartment C1; an additional one, C2, is used
for implementation purposes. In Section 3.3 is used again the representation axi

i , 1 ≤ i ≤ n, but a
more complex structure of compartments is provided in order to maximise the parallel behaviour
of the system implementing the sorting algorithm. The algorithm used in Section 3.1 and Section
3.2 makes comparisons of adjacent compartments by employing a two stage process. In the first
stage all pairs “odd-even” are compared (C2i−1 with C2i, i ≥ 1) and in the second stage all pairs
“even-odd” are involved (C2i with C2i+1, i ≥ 1).

3.1 Sorting Using kP Systems with an Element per Compartment

The approach presented below follows [18, 19], but stopping conditions have been also considered
and the sequence of numbers is obtained in ascending order.

Let us consider a kP system, kΠ1, having n compartments Ci = (ti, wi,0), where ti = (Ri, σi),
1 ≤ i ≤ n, and a set of objects A = {a, b, c, p, p′}. In each compartment, Ci, the initial multiset,
wi,0, 1 ≤ i ≤ n, includes the representation of the positive integer number xi, i.e., axi , the multiset
c2(n−1) and the object p for all odd index values, when n is an even number, and for all odd index
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values, but the last, when n is odd. The objects p stored initially in compartments indexed by
odd values indicate that one starts with stage one, whereby “odd-even” compartment pairs are
compared first. The multiset c2(n−1) will be used in a counting process, in each of the compartments,
that will help stopping the algorithm when the sorting is complete.

Let us consider for n = 6 the sequence 3, 6, 9, 5, 7, 8. Then the initial multisets are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 = a8c10. As n is even,
p appears in all compartments indexed by odd values, i.e., C1, C3, and C5.

In each compartment Ci, ti contains the following set of rules, denoted Ri, 1 ≤ i ≤ n,
r1,i : a→ (b, i+ 1) {≥ p}, i < n;
r2,i : p→ p′;
r3,i : p′ → (p, i+ 1), for i odd and i < n;
r′3,i : p′ → (p, i− 1), for i even and i > 1;
r4,i : ab→ a(a, i− 1), i > 1;
r5,i : b→ a, i > 1;
r : c→ λ.

The rule r is used for implementing the counting process mentioned above. By using the two
stage process of comparing “odd-even” pairs of compartments and then “even-odd” ones, one needs
at most n − 1 stages to complete the sorting. As will be explained below, each stage will involve
two steps and consequently after 2(n− 1) steps one expects to stop the sorting process.

In each compartment Ci, the execution strategy is given by σi = {r}{r1,i, r2,i, r3,i, r4,i}>
{r5,i}>, if i is odd; for even values of i, r3,i is replaced by r′3,i. The execution strategy, σi, tells
us that a sequence of three sets of rules are executed in each step. The first one indicates that
one single rule is applied and then two sets of rules are used, each of them applied in a maximal
parallel manner.

We assume that any two compartments, Ci, Ci+1, 1 ≤ i < n, are connected.

In the first step, of the “odd-even” stage, in every compartment one c is removed by applying
r : c→ λ; then the only applicable rules are r1,i, r2,i in all compartments indexed by an odd value.
Given the presence of p in these compartments, rules r1,i move all objects a from each compartment
with an odd index value, i, i < n, to the compartment Ci+1 by transforming them into bs and rules
r2,i transforming p into p′. In the next step, another c is removed from every compartment and
rules r3,i, r4,i, r5,i are then applied. The rules r3,i are applied in compartments with an odd index
value and r4,i are applied in compartments with an even index value, this means p′ is moved as p
from each Ci, i an odd value and i < n, to compartment Ci+1 and every ab, in each Cj , j an even
value and j > 1, is transformed into an a kept in the compartment and another a moved to Cj−1.
At the end of the step, in each compartment Cj , j an even value and j > 1, and in accordance with
the execution strategy, the remaining b objects, if any, are transformed into as. These two steps
implement comparators between two adjacent compartments, in this case “odd-even” pairs. If axi

from Ci and axi+1 from Ci+1, i < n, are such that xi > xi+1 then the multiset axi is moved to Ci+1

and axi+1 to Ci. In the next step, the first of the second stage, ps appear in even compartments
and the comparators are now acting between pairs of compartments Ci, Ci+1, where i is even and
i < n.

Given that the algorithm must stop in maximum 2(n − 1) steps, one can notice that in step
2(n− 1) the counter, c, disappears, i.e., becomes λ, and the first rule from the execution strategy,
r, is no longer applicable and then the next sets of rules are not executed either. Hence, the process
stops with the multisets codifying the positive integer values in ascending order.

The table below presents the first four steps of the sorting process.
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Compartments - Step C1 C2 C3 C4 C5 C6

0 a3c10p a6c10 a9c10p a5c10 a7c10p a8c10

1 c9p′ a6b3c9 c9p′ a5b9c9 c9p′ a8b7c9

2 a3c8 a6c8p a5c8 a9c8p a7c8 a8c8p
3 a3c7 c7p′ a5b6c7 c7p′ a7b9c7 a8c7p′

4 a3c6p a5c6 a6c6p a7c6 a9c6p a8c6

Now, one can state the result of the algorithm presented above and the number of steps involved.

Proposition 1. The above algorithm sorts in ascending order a sequence of n, n ≥ 1, positive
integer numbers in 2(n− 1) steps.

3.2 Sorting Using kP Systems with Two Compartments

In this section we use a representation of the positive integer numbers x1, · · · , xn as multisets
ax1
1 , · · · , axn

n , where a1, · · · , an are from a given set of distinct objects. We consider a kP system,
kΠ2, with two compartments Cj = (tj , wj,0), 1 ≤ j ≤ 2, which are linked and A = {a1, . . . , an, c}.
The initial multisets are w1,0 = ax1

1 · · · axn
n cn−1 and w2,0 = cn−1.

Finally, the kP system kΠ2 will lead to a multiset a
xi1
1 · · · axin

n in compartment C1, such that
xi1 ≤ · · · ≤ xin .

In compartment C1 the rules are
R1,1 = {aiai+1 → (ai, 2)(ai+1, 2) | 1 ≤ i < n ∧ i is odd};
R2,1 = {ai → (ai+1, 2) | 1 ≤ i < n ∧ i is odd};
R3,1 = {ai → (ai, 2) | 1 ≤ i ≤ n}.

We also consider the rule r : c→ λ, like in the previous section.
Compartment C2 has the rules

R1,2 = {aiai+1 → (ai, 1)(ai+1, 1) | 1 ≤ i < n ∧ i is even};
R2,2 = {ai → (ai+1, 1) | 1 ≤ i < n ∧ i is even};
R3,2 = {ai → (ai, 1) | 1 ≤ i ≤ n};
and the rule r defined above.

The execution strategies of these compartments are σj = {r}Lab(R1,j)
>Lab(R2,j)

>Lab(R3,j)
>,

j = 1, 2.
In compartment C1 one implements “odd-even” comparison steps and in C2 “even-odd” steps.

The process starts with compartment C1. The execution strategy in each compartment starts by
decrementing the counter (using r), then the comparators are implemented by executing first R1,j

and then R2,j , j = 1, 2, both in maximally parallel manner. After that all the pairs ai, ai+1 are sent
to the other compartment and when axi

i and a
xi+1

i+1 are such that xi > xi+1 then ai is transformed
into ai+1 and sent to the other compartment, i.e., ai and ai+1 are swapped and sent to the other
compartment. In the last part, are moved to the other compartment all the objects ai, 1 ≤ i ≤ n,
that remained there after comparisons. This is the case when a pair ai and ai+1 has its objects
with their multiplicities, xi and xi+1, respectively, in the right order, i.e., xi ≤ xi+1.

Clearly after at most n−1 steps the objects a1, · · · , an have their multiplicities in the ascending
order and the sorting process stops at step n − 1 as r is no longer applicable and the execution
strategy is not applicable any more.

Proposition 2. The above algorithm sorts in ascending order a sequence of n, n ≥ 1, positive
integer numbers in n− 1 steps.

One can produce a similar implementation whereby the comparison of two neighbours is made
more directly and with simpler rules, but with more complex guards.
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In this case we extend the definition of a guard, by allowing θan to be of the form θaf(z), where
f(z) is a function over the multisets of objects returning a positive integer value. For the current
multiset z, one can define, for instance, fb(z) = |z|b, Then a rule a → b{> afb(·)} is applicable to
z if the guard is true, i.e., |z|a > |z|b.

The extended definition of the guard allows us to implement a comparator with simpler rules
than in the previous case. We have the pair of integers x1, x2 represented as a1

x1 , a2
x2 . Consider

the pair of guarded rewriting rules

a1 → a2{> a1
fa2 (·)} and a2 → a1{< a2

fa1 (·)}

where fa2(w) = |w|a2 and fa1(w) = |w|a1 . Then both guards codify the condition x1 > x2.
If x1 ≤ x2 the rules are not applicable, while if x1 > x2, then the x1 copies of a1 are rewritten

as a2, and x2 copies of a2 are rewritten as a1, interchanging the values and achieving eventually
x1 ≤ x2.

A kP system, kΠ3, is defined now for sorting the sequence of n, n ≥ 1, positive integer numbers.
It consists of two compartments C1 and C2 which are linked. They have the same initial multisets
like kΠ2. The sets of rules associated with these compartments are

– R1 consisting of the following subsets of rules (R1 is responsible for “odd-even” stages):

• {c→ λ};
• R1,1 = {ai → (ai+1, 2){> a

fai+1
(·)

i } | i = 1, 3 · · · ∧ i ≤ n};
• R2,1 = {ai+1 → (ai, 2){< a

fai
(·)

i+1 } | i = 1, 3 · · · ∧ i ≤ n};
• R3,1 = {ai → (ai, 2) | i = 1, · · · , n}.

The function fai is defined fai(z) = |z|ai , 1 ≤ i ≤ n, for any multiset z.
Similarly, one defines R2 in compartment C2, which is used to implement the “even-odd” stage.

The execution strategy is given by σj = {r}Lab(R1,j ∪R2,j)
>Lab(R3,j)

>, j = 1, 2.

Proposition 3. The above algorithm sorts in ascending order a sequence of n, n ≥ 1, positive
integer numbers in n− 1 steps.

Remark 3. 1. The kP system kΠ3 has simpler rules (non-cooperative) than kΠ2 (cooperative rules),
but the guards of the rules in kΠ2 are simpler than those belonging to kΠ3.
2. The number of rules applied in each step to interchange axi

i and a
xi+1

i+1 is max{xi, xi+1} for kΠ2

and xi + xi+1 for kΠ3. Hence, kΠ2 uses less rules than kΠ3 in each one of the n− 1 steps.

3.3 A kP System for Sorting in Constant Time

We present two sorting methods exploiting more the massive parallelism of the P systems in general
and of the kP systems in particular. In both cases we consider the integers to be sorted x1, · · ·xn
distinct. In the first case one uses n2+2n compartments with specific initial multisets and a special
arrangement of links amongst them. In the second case the n2 compartments are replaced by n
compartments with simpler initial multisets.

For the first sorting method we consider n2 + 2n compartments:

- Ci,j , 1 ≤ i, j ≤ n, where each Ci,j will be responsible for a comparison;
- Ci, 1 ≤ i ≤ 2n, where each Ci, 1 ≤ i ≤ n, will collect the results of comparing xi to the rest;

and Ci, n+ 1 ≤ i ≤ 2n, will collect the sorted result.

The connections between compartments are given by the set of edges

E = ∪ni=1Ei
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where
Ei = {(Ci, Ci,j) | 1 ≤ j ≤ n} ∪ {(Ci, Ck) | n+ 1 ≤ k ≤ 2n}, 1 ≤ i ≤ n.

Each Ci,j , 1 ≤ i, j ≤ n, will contain the initial multiset wi,j,0 = ai
xiaj

xja and the rules
r′i,j : ai → ajF{> ai

fj(·)}; r′′i,j : aj → ai{< aj
fi(·)}; r′′′i,j : a→ a′;

ri,j : a′ → (F, i){≥ F},
where fi(z) = |z|ai and fj(z) = |z|aj .
The execution strategy is σi,j = {r′i,j , r′′i,j , r′′′i,j , ri,j}>.
Note that the rules r′i,j , r

′′
i,j implement a comparator between xi and xj , similar to the one of

the previous section. The modified comparator produces also a symbol F (False) when xi > xj ,
signifying that xi ≤ xj is false. If the rewriting rules r′i,j , r

′′
i,j and r′′′i,j have acted, then a single F

will be sent to compartment Ci (by using the rule ri,j).
In compartment Ci, 1 ≤ i ≤ n, we have the initial multiset wi,0 = ai

xia and the rules
r′i : a→ a′; r′′i : a′ → a′′;
ri,0 : ai → (a, n+ 1){< F ∧ = a′′}; ri,k : ai → (a, n+ k + 1){= F k ∧ = a′′}, 1 ≤ k ≤ n− 1.

The execution strategy is σi = {r′i, r′′i , ri,0, · · · , ri,n−1}>.
Compartments Ci, n+ 1 ≤ i ≤ 2n, are initially empty and contain no rules.
The functioning of the system is as follows. Initially, in compartments Ci,j , 1 ≤ i, j ≤ n, the

rules r′i,j , r
′′
i,j , and r′′′i,j act. If xi > xj the values will be interchanged and some F s will be produced

(rules r′i,j , r
′′
i,j are used), signifying that xi ≤ xj is false. Also r′′′i,j is used to transform a in a′. If

at least one F is produced in Ci,j , then a single F will be sent to Ci, using rule ri,j . In parallel, in
each compartment Ci, 1 ≤ i ≤ n, in the first two steps the rules r′i and r′′i are applied.

After these two steps, no rules are applicable in Ci,j , 1 ≤ i, j ≤ n, and in Ci, 1 ≤ i ≤ n,
the rules ri,k, 0 ≤ k ≤ n − 1, might be applicable, depending on the number of F s collected.The
number of F s tells us how many comparisons xi ≤ xj , 1 ≤ j ≤ n, are false. If we have k such F s in
Ci, it means that xi is greater than exactly k other values, which means that in the sorted order it
must be the (k+ 1)-th component. This is accomplished by sending axi in Cn+k+1. The maximum
number of F s in Ci is n − 1 because Ci,i will never produce an F . If there are no F s in Ci, this
means that xi is the minimum, and axi will be sent to Cn+1. Compartments Cn+i, 1 ≤ i ≤ n,
collect the result of sorting. Each such Cn+i will contain at the end of the computation the string
axki , xki being the i-th value in the sorted order. The computation has three steps, the first two
ones in which Ci,j , 1 ≤ i, j ≤ n, work, and a third one in which Ci, 1 ≤ i ≤ n, work.

Proposition 4. The above kP system sorts n integers in 3 steps.

Remark 4. This algorithm makes extensive use of the n2 additional compartments, Ci,j , 1 ≤ i, j ≤
n, their contents, axi

i and a
xj

j , and links with the first n components, Ci, 1 ≤ i ≤ n. This so-
lution, although computationally efficient, requires an initial, quite complex, setting, i.e., some
precomputed resources of size O(n2). This can be simplified as shown by the next sorting method.

In the second sorting method we consider 2n compartments Ci, 1 ≤ i ≤ 2n, as above and
replace the n2 compartments, Ci,j , 1 ≤ i, j ≤ n, by a much simpler set of n compartments from
which Ci,j , 1 ≤ i, j ≤ n, compartments are obtained by using membrane division rules. Let us say
that the new set of compartments are Ck, 2n + 1 ≤ k ≤ 3n, and each Ck is connected to a Ci,
1 ≤ i ≤ n, such that k − 2n = i. Each compartment Ck, 2n + 1 ≤ k ≤ 3n, contains the initial
multiset wk,0 = s, where s is a new object. Membrane division rules can be used to transform each
Ck, 2n+ 1 ≤ k ≤ 3n, in one step, into n compartments Ci,j , 1 ≤ j ≤ n and k − 2n = i, 1 ≤ i ≤ n.
We could use the rules

[s]k → [a1
x1ai

xia]i,1 · · · [ajxjai
xia]i,j · · · [anxnai

xia]i,n, 2n+ 1 ≤ k ≤ 3n, k − 2n = i.

Hence one additional step will be added to the algorithm. The rules of Ci will be modified to
account for this additional step. We can now formulate the following result.
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Proposition 5. The above kP system sorts n integers in 4 steps.

Remark 5. This algorithm requires 3n compartments, the first 2n have similar structure to the
first 2n compartments presented in the first sorting method, hence the entire initial settings is
much simpler.

4 Simulating and Verifying kP Systems

In Section 3, we have illustrated that kP systems provide a coherent and expressive language
that allows us to model various systems that were originally implemented by different P system
variants. In addition to the modelling aspect, there has been a significant progress on analysing kP
systems using various simulation and verification methodologies. The methods and tools developed
in this respect have been integrated into a software platform, called kPWorkbench, to support
the modelling and analysis of kP systems.

The ability of simulating kernel P systems is an important feature of this tool. Currently, there
are two different simulation approaches, kPWorkbench Simulator and Flame (Flexible Large-
Scale Agent Modelling Environment). Both simulators receive as input a kP system model written
in kP–Lingua and output a trace of the execution, which is mainly used for checking the evolution
of a system and for extracting various results out of the simulation. The simulators provide traces
of execution for a kP system model, and an interface displaying the current configuration (the
content of each compartment) at each step. It is useful for checking the temporal evolution of a
kP system and for inferring various information from the simulation results.

Another important analysis method that kPWorkbench features is formal verification, requir-
ing an exhaustive analysis of system models against some queries to be verified. The automatic ver-
ification of kP systems brings in some challenges as they feature a dynamic structure by preserving
the structure changing rules such as membrane division, dissolution and link creation/destruction.
kPWorkbench employs different verification strategies to alleviate these issues. The framework
supports both Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) properties by
making use of the Spin [23] and NuSMV [15] model checkers.

In order to facilitate the formal specification, kPWorkbench features a property language,
called kP-Queries, comprising a list of natural language statements representing formal property
patterns, from which the formal syntax of the Spin and NuSMV formulas are automatically
generated. The property language editor interacts with the kP-Lingua model in question and
allows users to directly access the native elements in the model, which results in less verbose and
shorter state expressions, and hence more comprehensible formulas. kP-Queries also features a
grammar for the most common property patterns. These features and the natural language like
syntax of the language make the property construction much easier.

Some of the commonly used patterns are “next”, “existence”, “absence”, “universality”, “re-
currence”, “steady-state”, “until”, “response” and “precedence”. The details can be found in [22].

We now illustrate the usage of the query patters on the sorting algorithm given in Section 3.1.
The other algorithms can be considered in a similar manner. In order to verify that the algorithm
works as desired, we have constructed a set of properties specified in kP-Queries, listed in Table
1. The applied pattern types are given in the second column of the table. For each property we
provide the following information; (i) informal description of each kP-Query, and (ii) the formal
kP-Query using the patterns. The queries given in Table 1 capture that the algorithm given in
Section 3.1 works as desired.

We note that both the kP–Lingua model and the queries are automatically converted into the
languages required by the corresponding model checkers. So, the verification process in kPWorkbench
is carried out in an automatic manner.
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Prop. Pattern (i) Informal query, (ii) Formal query using patterns

1 Existence
(i) The numbers will be eventually sorted, i.e. the multisets representing the numbers will be
in ascending order in the compartments
(ii) eventually (c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

2 Universality
(i) Counters in different compartments are always sync’ed
(ii) always (c1.c = c2.c & c2.c = c3.c & c3.c = c4.c & c4.c = c5.c & c5.c = c6.c)

3 Steady-state
(i) In the steady-state, the numbers are sorted
(ii) steady-state (c1.a <= c2.a & c2.a <= c3.a & c3.a <= c4.a & c4.a <= c5.a & c5.a <= c6.a)

4 Existence
(i) The algorithm will eventually stop
(ii) eventually (ci.c = 0)

5 Response
(i) An unsorted state of two adjacent compartments will always be followed by a sorted one
(ii) (ci.a >ci+1.a) followed-by (ci.a <= ci+1.a)

Table 1: List of properties derived from the property language and their representations in different
formats.

5 Testing kP Systems Using Automata Based Techniques

In this section we outline how the kP systems obtained in the previous sections can be tested using
automata based testing methods. The approach presented here follows the blueprint presented in
[25] and [17] for cell-like P systems. We illustrate our approach on kΠ1, the application of our
approach on the other kP system modelling sorting algorithms is similar.

Naturally, in order to apply an automata based testing method to a kP model, a finite automata
needs to be obtained first. In general, the computation of a kP system cannot be fully modelled by
a finite automaton and so an approximate automaton will be sought. The problem will be addressed
in two steps.

– Firstly, the computation tree of a P system will be represented as a deterministic finite automa-
ton. In order to guarantee the finiteness of this process, an upper bound k on the length of any
computation will be set and only computations of maximum k transitions will be considered
at a time.

– Secondly, a minimal model, that preserves the required behaviour, will be defined on the basis
of the aforementioned derivation tree.

Let Mk = (Ak, Qk, q0,k, Fk, hk) be the finite automaton representation of the computation tree,
where Ak is the finite input alphabet, Qk is the finite set of states, q0,k ∈ Qk is the initial state,
Fk ⊆ Qk is the set of final states, and hk : Qk × Ak −→ Qk is the next-state function. Ak is
composed of the tuples of multisets that label the transition of the computation tree. The states of
Tk correspond to the nodes of the tree. For testing purposes we will consider all the states as final.
It is implicitly assumed that a non-final “sink” state qsink that receives all “rejected” transitions,
also exists.

Consider kΠ1, the kP system in section 3.1, n = 6 and the sequence to be sorted 3, 6, 9, 5, 7,
8. Then the initial multisets are:
w1,0 = a3c10p;w2,0 = a6c10;w3,0 = a9c10p;w4,0 = a5c10;w5,0 = a7c10p;w6,0 = a8c10. As kΠ1 is
a deterministic kP system, there is no ramification in the computation tree. For k = 3, this is
represented below.

Compartments - Step C1 C2 C3 C4 C5 C6

0 rr31,1r2,1 r rr91,3r2,3 r rr71,5r2,5 r

1 rr3,1 rr34,2 rr3,3 rr54,4r
4
5,4 rr3,5 rr74,6

2 r rr61,2r2,2 r rr91,4r2,4 r rr2,6
3 r rr′3,2 rr51,3r5,3 rr′3,4 rr71,5r

2
5,5 rr

′
3,6
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Let us denote
α1 = (rr31,1r2,1, r, rr

9
1,3r2,3, r, rr

7
1,5r2,5, r),

α2 = (rr3,1, rr
3
4,2, rr3,3, rr

5
4,4r

4
5,4, rr3,5, rr

7
4,6),

α3 = (r, rr61,2r2,2, r, rr
9
1,4r2,4, r, rr2,6),

α4 = (r, rr′3,2, rr
5
1,3r5,3, rr

′
3,4, rr

7
1,5r

2
5,5, rr

′
3,6).

Then, for k = 3, Mk = (Ak, Qk, q0,k, Fk, hk), where
Ak = {α1, α2, α3, α4}, Qk = {q0,k, q1,k, q2,k, q3,k, q4,k}, Fk = Qk, and hk, the next-state function,
is defined by: hk(qi−1,k, αi) = qi,k, 1 ≤ i ≤ 4.

As Mk is a deterministic finite automaton over Ak, one can find the minimal deterministic
finite automaton that accepts exactly the language defined by Mk. However, as only sequences of
at most k transitions are considered, it is irrelevant how the constructed automaton will behave
for longer sequences. Consequently, a deterministic finite cover automaton of the language defined
by Mk will be sufficient.

A deterministic finite cover automaton (DFCA) of a finite language U is a deterministic finite
automaton that accepts all sequences in U and possibly other sequences that are longer than any
sequence in U [4], [5]. A minimal DFCA of U is a DFCA of U having the least possible states.
A minimal DFCA may not be unique (up to a renaming of its states). The great advantage of
using a minimal DFCA instead of the minimal deterministic automaton that accepts precisely
the language U is that the size (number of states) of the minimal DFCA may be much less than
that of the minimal deterministic automaton that accepts U . Several algorithms for constructing
a minimal DFCA (starting from the deterministic automaton that accepts the language U) exist,
the best known algorithm [27] requires O(n log n) time, where n denotes the number of states of
the original automaton. For details about the construction of a minimal DFCA we refer the reader
to [25] and [27].

A minimal DFCA of the language defined by Mk, k = 3, is M = (A,Q, q0, F, h), where A = Ak,
Q = {q0, q1, q2, q3}, F = Q and h defined by: h(qi−1, αi) = qi, 1 ≤ i ≤ 3 and h(q3, α4) = q0.

Now, suppose we have a finite state model (automaton) of the system we want to test. In
conformance testing one constructs a finite set of input sequences, called test suite, such that
the implementation passes all tests in the test suite if and only if it behaves identically as the
specification on any input sequence. Naturally, the implementation under test can also be modelled
by an unknown deterministic finite automaton, say M ′. This is not known, but one can make
assumptions about it (e.g. that may have a number of incorrect transitions, missing or extra states).
One of the least restrictive assumptions refers to its size (number of states). The W -method [12]
assumes that the difference between the number of states of the implementation model and that
of the specification has to be at most β, a non-negative integer estimated by the tester. The W -
method involves the selection of two sets of input sequences, a state cover S and a characterization
set W [12].

In our case, we have constructed a DFCA model of the system and we are only interested in
the behavior of the system for sequences of length up to an upper bound k. Then, the set suite
will only contain sequences of up to length k and its successful application to the implementation
under test will establish that the implementation will behave identically to the specification for
any sequence of length less then or equal to k. This situation is called conformance testing for
bounded sequences. Recently, it was shown that the underlying idea of the W -method can also be
applied in the case of bounded sequences, provided that the sets S and W used in the construction
of the test suite satisfy some further requirements; these are called a proper state cover and strong
characterization set, respectively [24]. In what follows we informally define these two concepts and
illustrate them on our working example. For formal definitions we refer the reader to [24] or [25].

A proper state cover of a deterministic finite automaton M = (A,Q, q0, F, h) is a set of sequences
S ⊆ A∗ such that for every state q ∈ Q, S contains a sequence of minimum length that reaches q.
Consider M the DFCA in our example. Then λ is the sequence of minimum length that reaches
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q0, σ1 is a sequence of minimum length that reaches q1, α1α2 is a sequence of minimum length
that reaches q2, α1α2α3 is a sequence of minimum length that reaches q3. Furthermore, we can
use any input symbol in A \ {α1} to reach the (implicit) “sink” state, for example α2. Thus,
S = {λ, α1, α1α2, α1α2α3, α2} is a proper state cover of M .

A strong characterization set of a minimal deterministic finite automaton M = (A,Q, q0, F, h)
is a set of sequences W ⊆ A∗ such that for every two distinct states q1, q2 ∈ Q, W contains a
sequence of minimum length that distinguishes between q1 and q2. Consider again our running
example. λ distinguishes between the (non-final) “sink” state and all the other (final) states. A
transition labelled α1 is defined from q0, but not from q1, q2 or q3, so α1 is a sequence of minimum
length that distinguishes q0 from q1, q2 and q3. Similarly, α2 is a sequence of minimum length that
distinguishes q1 from q2 and q3 and α3 is a sequence of minimum length that distinguishes between
q2 and q3. Thus W = {λ, α1, α2, α3} is a strong characterization set of M ,

Once we have established the sets S and W and the maximum number β of extra states that
the implementation under test may have, a test suite is constructed by extracting all sequences of
length up to k from the set

S(A0 ∪A1 ∪ · · · ∪Aβ)W,

where Ai denotes the set of input sequences of length i ≥ 0.
Note that some test sequences may be accepted by the DFCA model - these are called positive

tests - but some others may not be accepted (they end up in the (non-final) “sink” state) - these
are called negative tests.

6 Conclusions

In this paper, we have illustrated the modelling power of kernel P systems by providing a number
of kP system models for sorting algorithms.These prove that the kP systems approach provides
a coherent and expressive language that allows us to model various systems that were originally
implemented by different P system variants. We have also discussed the problem of testing systems
modelled as kernel P systems and proposed a test generation method based on automata. Namely,
we have outlined how the kP systems can be tested using automata based testing methods. Fur-
thermore, we have demonstrated how formal verification can be used to validate that the given
models work as desired.

In our future work we aim to show how other problems can be solved, tested and verified by
using kP systems and also to prove how existing classes of P systems can be expressed with this
formalism.
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30. Gh. Păun, G. Rozenberg, A. Salomaa, eds., The Oxford Handbook of Membrane Computing, Oxford

University Press, 2010.
31. D. Sburlan, A Static Sorting Algorithm for P Systems with Mobile Catalysts, Analele Ştiinţifice Uni-
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Abstract. The capability of self-organisation belongs to the most fas-
cinating features of many living organisms. It results in formation and
continuous adjustment of dedicated spatial structures which in turn can
sustain a high fitness and efficient use of resources even if environmental
conditions or internal factors tend to vary. Spatial structures in this con-
text might for instance incorporate topological arrangements of cellular
compartments and filaments towards fast and effective signal transduc-
tion. Due to its discrete nature, the P systems approach represents an
ideal candidate in order to capture emergence and evolution of topologies
composed of membranes passable by molecular particles. We introduce
grid-exploring P systems in which generalised membranes form the grid
elements keeping the grid structure variable. Particles initially placed
at different positions of the grid’s boundary individually run through
the grid visiting a sequence of designated membranes in which they be-
come successively processed. Using artificial evolution, the arrangement
of membranes within the grid becomes optimised for shortening the total
time duration necessary for complete passage and processing of all par-
ticles. Interestingly, the corresponding framework comprises numerous
practical applications beyond modelling of biological self-organisation.
When replacing membranes by queue-based treads, tools, or process-
ing units and particles by customers, workpieces, or raw products, we
obtain a multi-purpose optimisation strategy along with a simulation
framework. Three case studies from cell signalling, retail industry, and
manufacturing demonstrate various benefits from the concept.

1 Introduction and Background

Living organisms appear almost perfectly adapted to environmental conditions.
A plethora of elaborated survival strategies in concert with highly optimised
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form and function enables maintenance of individuals (autopoiesis) as well as
long-term persistence of entire biological species or colonies. Impressive exam-
ples range from nanoscaled intracellular pathway mechanisms [10, 15] via shapes
of tissues or seeds [3, 7, 18] up to complex behavioural patterns of ant colonies,
construction of insects’ nests, or positioning of foxholes within a bumpy land-
scape [4, 5, 19]. All these phenomena have in common that spatial structures and
arrangements follow the best possible way to fulfil a useful function in helping
the organism to cope with realities.

Sometimes, a more or less static formation of a structure is sufficient. Let
us consider for instance the common sunflower (Helianthus annuus). Its florets
in the head are arranged in a way to assure a maximum exploitation of light
energy since the individual florets have small offsets to each other. This in turn
gives two advantages: Firstly, the shadow induced by a floret cannot significantly
cover another floret. Secondly, the total number of florets within the sunflower’s
head reaches its maximum by close packaging [21]. To this end, the florets form
centered spiral structures (Fermat’s spirals) whose rotation angle resembles the
golden ratio expressed by Fibonacci numbers, see Figure 1 left part.

The scenario becomes more complicated when considering temporally dy-
namic control of spatial structures in an adaptively continuous manner instead
of a one-time static formation. Resulting systems turn out to be highly ro-
bust against perturbations and damages. In addition, they might be able to
restore themselves up to a certain degree of damage. Moreover, corresponding
organisms undergo a permanent “self-assembly”, “self-optimisation”, and “self-
healing” aimed at providing the best possible survival conditions [8]. An illus-
trative example in this context can be seen in the wide cardiovascular network
of human blood vessels [22, 27]. The existence and reliability of this circulatory
system is essential for supply of each single cell with nutrients, metabolites, hor-
mones, and other messengers. Substances released by a cell are also transported
via the blood stream. The underlying topology of the cardiovascular network
obviously follows its function taking into account a minimum need of mate-
rial resources and mechanical energy [23]. Mostly, this becomes evident by the
placement of branches and junctions successively dividing arteries and capillaries
towards more and more fine-grained spatial structures sketched in Figure 1 right
part. Number and spatial positions of junctions keep appropriately balanced [9].
Interestingly, the cardiovascular network topology re-organises all the time [16].
Along with human ontogenesis from embryonic state and during childhood, the
network initially grows. After maturation, the network further adapts to the
individual lifestyle. If a capillar blood vessel becomes locked due to plugs, neigh-
boured vessels can extend and re-branch in order to compensate the damage.

Both aforementioned biological examples – arrangement of florets in sun-
flower heads as well as the cardiovascular network topology of human blood
vessels – demonstrate the capability of self-organisation. There are much more
examples in many facets of biology and medicine. In all cases, spatial structures
exhibit a certain flexibility which has been permanently utilised to find out the
best possible topology to achieve adaptively under present constraints. Modi-
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arrangement of florets in sunflower artery vein

network of capillaries

Fig. 1. Biological examples of spatial structures emerged from self-organising formation
and maintenance. Left: Close two-dimensional packaging of florets in a sunflower head
forming Fermat’s spirals [21]. Right: Schematic representation of a cardiovascular
network structure composed of blood vessels by self-organisation.

fications affecting the topology have been initiated endogenously which means
without any external control. Inspired by its potential in nature, we are going
to develop an abstract desriptive framework for exploration of self-organisation
in-silico on a two-dimensional grid along with a corresponding software for sys-
tem’s configuration and behavioural simulation. The P systems approach in gen-
eral provides an ideal candidate to formalise this framework since it can directly
cope with dynamical structures due to its employent of algebraic elements and
flexible hierarchically nested compositions from that.

What stands out after study of diverse systems equipped with self-
organisation is that in a majority of cases the optimised topology has been
passed by particles. Typically, the particles carry a dedicated meaning for the
underlying system such as providing information, energy supply, or messages.
For instance, hormones as particles within the blood stream should fast and
safely reach their specific destination cells coupled to the blood vessels. Pho-
tons assumed as particles should intensively and homogeneously penetrate the
sunflower florets instead of getting lost aside. In other words, the entirety of
particles passing through the topology defines the fitness of the topology on its
own. During passage, a particle is allowed to consult a predetermined sequence
of destinations within the topology in terms of a signalling cascade. Here, each
destination acts as a processing unit for particles which in turn successively pro-
ceed and finally leave the system or get consumed. In the end, the whole amount
of time necessary to completely process a given initial setting of particles mea-
sures the quality of the underlying topology under study. Slight modifications of
the topology can lead to a better, worse, or unchanged quality. Those produc-
ing a better quality are retained. Modifications of the topology characterise an
adaptive self-organisation able to manage varying settings of particles over time.

Potential applications of self-organising topologies are not restricted to mod-
elling of pure biological phenomena. Particularly, the fourth industrial revolution
(“Industry 4.0”) comes along with an increased need of so-called self-X proper-
ties [14]. Formerly large-volume fabrication of uniform products has been more
and more transformed into assembly of highly individualised products. To this
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end, instead of mass-products, a huge variety of customised goods emerges. In
order to successfully manage the underlying production processes, a continuous
self-configuration, self-optimisation, and self-organisation of involved machines,
processing units, and manufacturing facilities becomes essential. So, the place-
ment and arrangement of moveable machines within a factory building could re-
organise according to the current production order. In this way, groups or clusters
of machines placed close to each other enable a cascaded form of production with
short transportation distances of raw products. Here, a self-organised topology
of machines aims at fastest passage and successive processing of raw products
towards final products. In this scenario, the raw products act as particles while
the underlying two-dimensional grid is composed of regions (“membranes”), each
of them covered by a machine or forming a paved area for transportation. Hav-
ing in mind that several types of machines can exist and raw materials prior to
raw products may enter the grid at different entries, a non-trivial optimisation
problem occurs in which the best possible topology needs to be found. Whenever
there is a change of the production order, the optimisation problem arises again.
Coping with dynamical structures within a formal framework turns out to be a
final clue which opens a new field of applications for the P systems approach.

Another non-biological example of a self-organising two-dimensional grid of
membranes passed by particles comes from retail industry when considering
a typical supermarket. Nowadays, the arrangement of products at the two-
dimensional ground follows a sophisticated scheme resulting from modern sales
psychology. Customers should stay for a long time in the supermarket discover-
ing more and more attractive products alongside their route from the entry to
the cashpoints. In contrast, let us imagine an alternative form called “Supermar-
ket 2.0” reflecting the habit of educated customers: They know in advance what
products they are looking for. In addition, they permanently suffer from lack of
time. This type of customers is interested in finding all desired products as fast
as possible walking across the supermarket at the shortest possible path. Scan-
ners in concert with contact-free automatic payment could further accelerate the
shopping. While passing a supermarket’s exit, the customer confirms the price
to pay simply by pressing a button and having the debit card in the pocket. This
concept has been already under test study [6, 24]. It avoids the queue in front
of conventional cashpoints. In this context, an optimal placement of products
adapted to the preferences of educated customers defines an appealing scenario
for a self-organisation framework in which customers represent the particles.

Motivated by these and many further application scenarios, we introduce
grid-exploring P systems for topological optimisation of cascaded processes.
Here, self-organisation towards fastest passage and processing of particles is
carried out using artificial evolution which in turn cares for variation of grid
elements. Since grid elements constitute membranes able to be entered and left
by particles, the metaphor of walking membranes depicts the central idea traced
throughout this paper. Principles of self-organisation have been addressed in the
field of membrane computing from time to time. Tissue P systems [17] reflect the
idea of a membrane grid. By grid-exploring P systems, we extend the notion of
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tissue P systems by dedicated transmembranous instructions (sequences of pro-
cessing units) to be executed by each particle. Modelling of swarm-based multi-
agent systems succeeded using population P systems [26]. In [2], self-assembly
by consecutive membrane division in population P systems was modelled. Self-
adaptive and reconfigurable distributed computing systems were introduced in
[1]. Here, self-organisation is employed to minimise failures in network partition-
ing. Each node in the network stands for a uniform type of processor. When
looking at self-modifiable sequences of instructions able to compose functional
chemical units (modules) on the fly, we refer the reader to [13]. In [11], evalua-
tion, accumulation, and categorised counting of particles initially positioned at a
planar two-dimensional surface was considered for image analysis using blotting
P systems. Some approaches in membrane computing are directed at modelling
of dynamical structures in various facets. For instance, variable molecular struc-
tures expressed by modifiable character strings became apparent in [12] while
active membranes flank the notion of P systems almost from its beginning [20].

In the following section, we familiarise the reader with the general concept
of grid-exploring P systems which also sheds light on the assumptions made to-
wards an abstract, flexible, and nevertheless widely practicable framework. After
that, Section 3 is dedicated to define the underlying formalisms and algorithms
comprising the framework of grid-exploring P systems and their behaviour over
time. Our model comes along with three case studies revealing the overall capa-
bility of explorative two-dimensional grid optimisation in different application
scenarios. First, we address biological cell signalling by taking into considera-
tion several pathways (Section 4.1). Placement of receptors in conjunction with
downstream signalling cascade destinations can induce a broad spectrum of la-
tencies prior to cell response depending on the type (urgency) of stimulus signal.
Beyond biology, Section 4.2 is focused on a production scenario in manufactur-
ing. Here, an optimised placement of processing units for cascaded production
of several goods is exemplified by a cabinet maker’s workshop. The advantage
of specific islands of machine tools over conventional production lines becomes
visible. In Section 4.3, we develop an experimental idea of a possible alternative
supermarket in the future whose arrangement of products follows the needs of
educated customers in hurry. Even if a bit visionary, this example could sketch a
new prototype of supermarket dominated by groups of frequently chosen prod-
uct combinations. Final remarks discuss the concept of grid-exploring P systems
regarding its extensibility for further work.

2 General Concept

Basic prerequisite for the topological optimisation is a configurable initial n×m
grid composed of membranes as grid elements. In this context, a membrane
represents a square-shaped region or area able to be entered, passed, and left by
particles. In addition, membranes can also process or consume particles during
passage. According to its functional purpose, we assume different predefined
types of membranes:
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processing unit type B
kind of processing: * −> * (passage)
processing duration: 1

processing unit type C
kind of processing: a + b −> d (assembly)
processing duration: 1

processing unit type A
kind of processing: * −> * (passage)
processing duration: 3

paved area for transportation
particle capacity: 50
duration of passage: 1

blocked area forbidden to enter

types of membranes

A

B

C B

B A

C

A

C

B

b 8 ABC

a 8 BABC

c 7 ABAB

d 10 B

Fig. 2. Example of a predefined 9 × 11 grid with 7 entries/exits and 7 processing
units marked by capitalised letters. From each processing unit, any processing unit of
different type can be reached via paved areas. Initially, particles are placed in front
of entries. There are four categories of particles called a, b, c, and d. Each particle is
obliged to consult the corresponding sequence of processing units. By doing so, it can
either be consumed within a processing unit (like in unit C which assembles a+ b→ d

by consumption of particles a and b) or finally runs to the nearest entry/exit after
completion of processing.

– A paved area allows particle transportation. The corresponding membrane
can be passed by particles in all directions without any processing or modifi-
cation. Each paved area comes with two individual parameters: Its capacity
defines the maximum number of particles permitted to stay inside the mem-
brane at the same time. In case of exhausted capacity, no further particles
can enter. Another parameter is the duration of passage, expressed by a nat-
ural number > 0. Its value marks the minimum number of time steps each
particle must reside inside the membrane. Afterwards, it can leave the mem-
brane by entering an adjacent membrane if possible. In its entirety, paved
areas make accessible the grid for particles. When placed adjacent to each
other, sequenced paved areas develop pathes throughout the grid to be trod-
den by particles. Paved areas placed at the outer boundary of the grid act
as combined entries and exits. Each grid must have at least one entry/exit.

– A blocked area is a permanently empty membrane forbidden to become
entered by particles. Using blocked areas, fixed zones can be excluded from
any topological consideration and variation. This enables incorporation of
specific immutable features of the underlying landscape or ground.

– A processing unit specifies a membrane able to affect particles which are
permitted to enter from all adjacent paved areas. Since processing of particles
can happen in a varied manner, we distinguish different types of processing
units. The number of processing unit types can be arbitrarily chosen but at
least one is mandatory. For simplicity, we assign a capitalised letter starting
from A for each processing unit type. The grid example shown in Figure 2
utilises three types denoted by A, B, and C. Addressed by its name, each
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processing unit type comprises two attributes for its behavioural specifica-
tion. The processing duration, a natural number > 0, indicates the number
of time steps necessary to carry out the processing. Furthermore, the kind of
processing is given. Here, either the mode passage or assembly are available.

• Passage, marked by * → *, leaves intact each entering particle which
migrates to an adjacent membrane after processing as soon as possible.
At the same time, at most one particle is allowed to be present in the
processing unit.

• Assembly emulates a composition, incorporation, or unification of two
particles which results in a particle again. Let particles a, b, and c be
present within the grid, assembly can be of the form a+ b→ c (compo-
sition) but also a + b→ a (incorporation) or a + a→ b (unification). In
the assembly mode, exactly two particles of the processed form are per-
mitted to reside simultaneously within the processing unit. Along with
assembly, these two particles are consumed releasing the corresponding
product particle to leave the membrane as soon as possible.

Several instances of processing units of each type might be placed at the
initial grid. Each processing unit must be reachable via at least one paved
area. Adjacent positioning of processing units is forbidden in order to imply
a transportation phase between subsequent processing steps.

Figure 2 illustrates an example of an initial grid configuration complemented by
the placement of particles before passing the grid. For system’s setup, we distin-
guish an arbitrarily chosen but final number of particle categories, for simplicity
named by lower-case letters beginning from a. Each particle category comprises
the total number of individual particles together with a uniform final sequence of
processing unit identifiers to be passed. All particles from the same category are
collectively placed in front of an arbitrary entry/exit of the grid. In the example
shown in Figure 2, there are four categories of particles (a, b, c, and d). Within
this example setting, a total amount of 8 particles from category a are situated
on top of the only entry/exit at the upper bound of the grid. Each particle from
a must migrate to the nearest processing unit from type B, then A, B again, and
finally C. Since C consumes particles of category a, their passage is finished there.
Otherwise, particles after all steps of processing run to the next entry/exit to
leave the grid.

Having the initial grid with its membranes and placement of particles at
hand, a behavioural simulation traces the passage of the particles through the
grid over time until all particles from all categories left the grid or got consumed.
The corresponding total number of times steps taken from a global clock marks
the fitness of the grid under study. The fitness measure reflects the suitability of
the grid for processing all particles in the desired manner. In the example given
in Figure 2, we obtain a fitness of 98 time steps. Please note that a particle must
wait inside a membrane if the subsequent membrane on its route cannot be
entered since it is fully occupied. In this way, the passage could get delayed. By
variation of the topological arrangement of processing units within the accessible
part of the grid, the corresponding fitness values might deviate from each other.
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Fig. 3. Four evolutionary cycles can improve the fitness from 98 time steps (initial grid,
left part) to 75 time steps (final grid, right part). Placement of particles and parameter
setting of processing units and paved areas remain unchanged. The underlying artificial
evolution carries out a self-organising optimisation of the grid topology in order to
diminish the overall time of passage for all particles from the initial placement.

The faster a grid can process all particles, the higher its fitness. It may happen
that a grid cannot completely process all particles due to two reasons: In case
of a deadlock (circular path of membranes whose capacities are exhausted) or
in case of persisting particles unable to become assembled due to lack of their
counterparts, the overall duration of passage (execution time) is set to ∞ which
implies worst possible fitness.

Out of the initial grid, a variety (“population”) of grids is generated using
artificial evolution. To this end, we introduce two evolutionary operators called
recombination and shift able to modify the grid topology:

– Recombination randomly selects two processing units out of the whole
grid. Both processing units get exchanged with each other. In case that
either processing units are from the same type, the recombination has no
effect, and the original grid is reproduced.

– Shift randomly picks one processing unit which swaps its place with one of
the adjacent paved areas which in turn have been also identified by random
in equipartition.

The initialisation phase of the artificial evolution creates a population of
grids. Here, a number of copies (“individuals”) from the initial grid is produced.
Each of them undergoes either a recombination or a shift in which the occurrence
of both operators is kept in parity. All grids emerged in this way are checked
for validity. Invalid grids become removed from the population and replaced by
additional ones until the desired population size is reached. A typical popula-
tion size in our case studies comprises 50 grids. An individual fitness evaluation
reveals the qualities of all grids in the population. The ascending order of fitness
values identifies at its end a number of worst grids (20% of the population size)
to be eliminated from the population. From the surviving grids, an appropriate
number of copies is made and each of them tackled once by an evolutionary
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operator in order to fill up the population. So, the new generation of the grid
population consists of a mixture of parents and offsprings in which the original
initial grid always persists independently of its fitness in order to ensure a revi-
talisation of the population if necessary. We run the evolution loop until there
is no improval of the best fitness over 100 generations. An optimisation result of
the initial grid exemplified in Figure 2 is shown in Figure 3.

3 Grid-exploring P Systems: Definitions and Formalisms

3.1 Algebraic and string-operational prerequisites

Let A and B be arbitrary sets, ∅ the empty set, N the set of natural numbers
including zero. The term |A| denotes the number of elements in A (cardinality).
The Cartesian product of A and B is written by A×B. A multiset over A is a
mapping F : A −→ N. A multiset can also be specified by unordered enumeration
of multiple elements like for instance {a, a, b, a, b} instead of {(a, 3), (b, 2)}. The
support supp(F ) ⊆ A of F is defined by supp(F ) = {a ∈ A | F (a) > 0}. A
multiset F over A is said to be empty iff ∀a ∈ A : F (a) = 0. The cardinality
|F | of F over A is |F | =

∑
a∈A

F (a). Let A be a set, a ∈ A, and F : A −→ N a

multiset. We define the removal F \{a} ⇔ F (a) := F (a)−1 and the incorporation
F ∪ {a} ⇔ F (a) := F (a) + 1, respectively.

Let Σ be an alphabet, ε the empty word, and w ∈ Σ∗ a word over Σ. The
symbol x ∈ Σ is called prefix (w) iff w = xy and y ∈ Σ∗. The symbol z ∈ Σ
is called suffix (w) iff w = yz and y ∈ Σ∗. Let u, v ∈ Σ∗ words over the same
alphabet. Concatenation u⊕v := uv appends v to u. For removal of the leftmost
symbol x from a word w, we define w 	 x := y with w = xy.

3.2 Definition of system components

A grid exploring P system Π� is a construct

Π� = (m,n,ΣF , ΣP , Gmbrns, Gcapac, Gdurat, F, P )

with its components
m ∈ N \ {0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of grid columns

n ∈ N \ {0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of grid rows

ΣF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . alphabet of processing unit types

ΣP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . alphabet of particle categories

Gmbrns : {1, . . . ,m} × {1, . . . , n} −→ ΣF ∪ {#} ∪ {⊥}
grid of membranes, denoted by a matrix and represented by a func-
tion whose arguments identify column and row. Assigned function
values provide the type of membrane at the corresponding grid
position. Available typs are processing units (∈ ΣF ), paved areas
(#), and blocked areas (⊥).
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Gcapac : {1, . . . ,m} × {1, . . . , n} −→ N
capacities of grid elements which define the maximum number
of particles allowed to be present at the same grid membrane
simultaneously. Blocked areas are assumed to have a capacity of
0. All other membranes should constitute individual capacities
> 0.

Gdurat : {1, . . . ,m} × {1, . . . , n} −→ N \ {0}
durations necessary for particle passage or processing individu-
ally assigned to each membrane within the grid. Each duration is
expressed by a number of time steps.

F : ΣF −→ {?} ∪Σ3
P . mode (kind of processing) for each processing unit type

P : {((i, j), p, f) | i ∈ {1, . . . ,m} ∧ j ∈ {1, . . . , n} ∧ p ∈ Σp ∧ f ∈ Σ∗F } −→ N
finite multiset of particles. Each particle comes with individual
attributes such as its position (i, j) at the grid, its category p,
and a finite sequence (word) f of processing unit types to be
consecutively passed through.

3.3 Auxiliary data to be obtained prior to system’s evolution

Undirected graph (V,E) of routes through the grid of membranes

V =
{

(a, b) | Gmbrns(a, b) ∈ ΣF ∪ {#}
}

and E ⊆ V × V with

E =
{(

(a, b), (c, d)
)
,
(

(c, d), (a, b)
)
| Gmbrns(a, b) ∈ ΣF ∪ {#} ∧

Gmbrns(c, d)∈ΣF ∪{#} ∧ (((|a− c| = 1) ∧ (b = d)) ∨ ((|b− d| = 1) ∧ (a = c)))
}

The graph (V,E) identifies the adjacence structure of grid membranes. Each
accessible membrane of the underlying grid results in a node while adjacent
membranes get bidirectionally connected by edges.

Shortest routes through graph (V,E)
Using the Floyd-Warshall algorithm [25], the shortest path from each node to
each other node along with its length is calculated by filling two matrices.

matrix of shortest routes Hroute : V × V −→ V ∗

matrix of shortest distances Hdist : V × V −→ N ∪ {∞}

for (i, j) ∈ V × V :

Hroute(i, j) := ε

Hdist(i, j) :=

{
1 iff (i, j) ∈ E
∞ otherwise

for (k, l) ∈ V :

for ((o, p), (q, r)) ∈ E:
dist := Hdist((o, p), (k, l)) +Hdist((k, l), (q, r))

if (dist < Hdist((o, p), (q, r))):

Hdist((o, p), (q, r)) := dist

Hroute((o, p), (q, r)) := Hroute((o, p), (k, l))⊕ (k, l)⊕Hroute((k, l), (q, r))
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Check for validity of the grid of membranes
Since the grid must be passable by the particles in the desired sequence of
processing units, a validity check of the grid prior to its fitness evaluation and
optimisation is required. Invalid grids cannot be handled. We formulate the
validity check by a number of constraints which have to be met in conjunction.
validity_check : (m,n,Gmbrns, Hdist, Hroute) 7→ {true, false}

• at least one entry/exit available

∃(a, b) ∈ {1, . . . ,m} × {1, . . . , n}.
(Gmbrns(1, b) = # ∨Gmbrns(a, 1) = # ∨Gmbrns(m, b) = # ∨Gmbrns(a, n) = #)

• no processing unit placed at the outer grid boundaries

6 ∃(a, b) ∈ {1, . . . ,m} × {1, . . . , n}.
(Gmbrns(1, b) ∈ ΣF ∨Gmbrns(a, 1) ∈ ΣF ∨Gmbrns(m, b) ∈ ΣF ∨Gmbrns(a, n) ∈ ΣF )

• no adjacent processing units

6 ∃(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . (Gmbrns(a, b) ∈ ΣF ∧Gmbrns(a, b+ 1) ∈ ΣF ∨
Gmbrns(a, b) ∈ ΣF ∧Gmbrns(a+ 1, b) ∈ ΣF )

• each processing unit type reachable from each other processing unit

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(a, b) ∈ ΣF ∧Gmbrns(c, d) ∈ ΣF ) ⇒

(Hdist((a, b), (c, d)) ∈ N ∨Hroute((a, b), (c, d)) = ε)

• route from an any processing unit to another one exclusively via paved areas

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(a, b) ∈ ΣF ∧Gmbrns(c, d) ∈ ΣF ∧ a 6= c ∧ b 6= d) ⇒

(∀x ∈ V . Hroute((a, b), (c, d)) = wxy ∧ w ∈ V ∗ ∧ y ∈ V ∗ ∧Gmbrns(x) = #)

• from any processing unit at least one entry/exit reachable

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
Gmbrns(a, b) ∈ ΣF ⇒ ∃Hroute((a, b), (c, d)) ∈ V ∗ . (c = 1 ∨ c = m ∨ d = 1 ∨ d = n)

• from each entry/exit each processing unit type reachable

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(1, b) = #)⇒ ∀f ∈ ΣF . ∃Hroute((1, b), (c, d)) ∈ V ∗ . Gmbrns(c, d) = f

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(m, b) = #)⇒ ∀f ∈ ΣF . ∃Hroute((m, b), (c, d)) ∈ V ∗ . Gmbrns(c, d) = f

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(a, 1) = #)⇒ ∀f ∈ ΣF . ∃Hroute((a, 1), (c, d)) ∈ V ∗ . Gmbrns(c, d) = f

∀(a, b) ∈ {1, . . . ,m} × {1, . . . , n} . ∀(c, d) ∈ {1, . . . ,m} × {1, . . . , n} .
(Gmbrns(a, n) = #)⇒ ∀f ∈ ΣF . ∃Hroute((a, n), (c, d)) ∈ V ∗ . Gmbrns(c, d) = f

If and only if all constraints are fulfilled, the validity check returns true.

Auxiliary function estimating next membrane towards nearest exit
After a particle has passed all processing units, it runs to the nearest exit. To
do so, we provide an auxiliary function which detects for all accessible grid
membranes (for all nodes in V ) the next membrane to be entered in order
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to reach the nearest exit. We implement succ_to_exit : V −→ V called by
succ_to_exit(i, j) in pseudocode.

min :=∞
x := ε

if (i = 1 ∨ i = m ∨ j = 1 ∨ j = n):

succ_to_exit(i, j) := (i, j)

else

for a ∈ {1, . . . ,m}:
if (Hdist((i, j), (a, 1)) < min):

min := Hdist((i, j), (a, 1))

x := Hroute((i, j), (a, 1))

if (Hdist((i, j), (a, n)) < min):

min := Hdist((i, j), (a, n))

x := Hroute((i, j), (a, n))

for b ∈ {1, . . . , n}:
if (Hdist((i, j), (1, b)) < min):

min := Hdist((i, j), (1, b))

x := Hroute((i, j), (1, b))

if (Hdist((i, j), (m, b)) < min):

min := Hdist((i, j), (m, b))

x := Hroute((i, j), (m, b))

if (x = ε):

succ_to_exit(i, j) := (i, j)

else

succ_to_exit(i, j) := prefix (x)

Function estimating next membrane towards next processing unit
Analogously, we make available an auxiliary function succ_to_proc_unit : V ×
ΣF −→ V which detects for all accessible grid membranes (for all nodes in V )
the next membrane to be entered in order to reach the nearest processing unit
from type f ∈ F . The function is called by succ_to_proc_unit((i, j), f).

min :=∞
x := ε

if (Gmbrns(i, j) = f):

succ_to_proc_unit((i, j), f) := (i, j)

else

for a ∈ {1, . . . ,m}:
for b ∈ {1, . . . , n}:
if ((Gmbrns(a, b) = f) ∧ (Hdist((i, j), (a, b)) < min)):

min := Hdist((i, j), (a, b))

x := Hroute((i, j), (a, b))

if (x = ε):

succ_to_proc_unit((i, j), f) := (i, j)

else

succ_to_proc_unit((i, j), f) := prefix (x)
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3.4 Passing the particles throughout the grid for estimation of total
overall execution time

The fitness of a grid together with its initial placement of particles is ex-
pressed by the overall execution time which means the number of time
steps necessary to process all particles and run them outwards the grid.
The formal description of the fitness evaluation is based on a global clock
counting the number of time steps on the one hand and the succes-
sive progression of the P system’s configuration on the other. Let Q =
{((i, j), p, f) | i ∈ {1, . . . ,m} ∧ j ∈ {1, . . . , n} ∧ p ∈ Σp ∧ f ∈ Σ∗F } −→ N be an
arbitrary multiset of particles located within the membrane at grid position (i, j).
We capture a configuration of Π� at time t by a triple (Qprocessing, Qmigratable, t)
in which t ∈ N∪{∞} marks a point in time. Qprocessing : V −→ (supp(Q)×N −→
N) assigns to each grid position (i, j) a multiset of particles present in this mem-
brane and being processed. Along with insertion of a particle into Qprocessing, a
time stamp is assigned. This is necessary in order to decide when the processing
is over. In addition, Qmigratable : V −→ Q contains for each grid position all par-
ticles locally processed and ready to migrate to the adjacent membrane as soon
as possible. The fitness function fitness : (Π�) 7→ t determines the number
of time steps to pass all particles up to the finally empty grid. To this end, the
global clock starts with 0, the initial configuration is set up, and afterwards a
loop becomes iterated in which the configuration is updated and the number of
elapsed time steps increased by 1.

t := 0

for a ∈ {1, . . . ,m}:
for b ∈ {1, . . . , n}:
Qprocessing(a, b) := ∅
Qmigratable(a, b) := ∅
for ((i, j), p, f) ∈ P:
if ((a = i) ∧ (b = j)):

Qprocessing(a, b) := Qprocessing(a, b) ∪ {(((i, j), p, f), t)}

while

(
n∑

b=1

m∑
a=1

(|Qprocessing(a, b)|+ |Qmigratable(a, b)|) > 0

)
:

t := t+ 1

for a ∈ {1, . . . ,m}:
for b ∈ {1, . . . , n}:
for (((i, j), p, f), τ) ∈ Qprocessing(a, b):

if ((a = i) ∧ (b = j)):

if (t ≥ τ +Gdurat(a, b)):

Qprocessing(a, b) := Qprocessing(a, b) \ {(((i, j), p, f), τ)}
Qmigratable(a, b) := Qmigratable(a, b) ∪ {((i, j), p, f)}

for ((i, j), p, f) ∈ Qmigratable(a, b):

if (Gmbrns(a, b) = #):

if (f = ε):

if ((i = 1) ∨ (i = m) ∨ (j = 1) ∨ (j = n)):
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Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p.f)}
elseif (|Qprocessing(succ_to_exit(i, j))| +

Qmigratable(succ_to_exit(i, j))| < Gcapac(succ_to_exit(i, j))):

Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p, f)}
Qprocessing(succ_to_exit(i, j)):=Qprocessing(succ_to_exit(i, j))

∪ {((succ_to_exit(i, j), p, f), t)}
if (Gmbrns(a, b) ∈ ΣF ∧ F (Gmbrns(a, b)) = ?):

if (f = ε):

if (|Qprocessing(succ_to_exit(i, j))| +

Qmigratable(succ_to_exit(i, j))| < Gcapac(succ_to_exit(i, j))):

Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p, f)}
Qprocessing(succ_to_exit(i, j)):=Qprocessing(succ_to_exit(i, j))

∪ {((succ_to_exit(i, j), p, f), t)}
elseif (|Qprocessing(succ_to_proc_unit((i, j), prefix (f))| +

Qmigratable(succ_to_proc_unit((i, j), prefix (f))| <
Gcapac(succ_to_proc_unit((i, j), prefix (f)))):

Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p, f)}
Qprocessing(succ_to_proc_unit((i, j), prefix (f))) :=

Qprocessing(succ_to_proc_unit((i, j), prefix (f))) ∪
{((succ_to_proc_unit((i, j), prefix (f)), p, f 	 prefix (f)), t)}

if (Gmbrns(a, b) ∈ ΣF ∧ F (Gmbrns(a, b)) 6= ?):

if (p = prefix (F (Gmbrns(a, b)))):

q := F (Gmbrns(a, b))	 prefix (F (Gmbrns(a, b))) 	
suffix (F (Gmbrns(a, b)))

partner := false

if (((i, j + 1), q, Gmbrns(a, b+ 1)) ∈ Qmigratable(a, b+ 1)):

partner := true

Qmigratable(a, b+ 1)) := Qmigratable(a, b+ 1)) \
{((i, j + 1), q, Gmbrns(a, b+ 1))}

elseif (((i, j − 1), q, Gmbrns(a, b− 1)) ∈ Qmigratable(a, b− 1)):

partner := true

Qmigratable(a, b− 1)) := Qmigratable(a, b− 1)) \
{((i, j − 1), q, Gmbrns(a, b− 1))}

elseif (((i+ 1, j), q, Gmbrns(a+ 1, b)) ∈ Qmigratable(a+ 1, b)):

partner := true

Qmigratable(a+ 1, b)) := Qmigratable(a+ 1, b)) \
{((i+ 1, j), q, Gmbrns(a+ 1, b))}

elseif (((i− 1, j), q, Gmbrns(a− 1, b)) ∈ Qmigratable(a− 1, b)):

partner := true

Qmigratable(a− 1, b)) := Qmigratable(a− 1, b)) \
{((i− 1, j), q, Gmbrns(a− 1, b))}

if (partner = true):

if (f = ε):

if (|Qprocessing(succ_to_exit(i, j))| +

|Qmigratable(succ_to_exit(i, j))| < Gcapac(succ_to_exit(i, j))):
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Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p, f)}
Qprocessing(succ_to_exit(i, j)) :=

Qprocessing(succ_to_exit(i, j)) ∪
{((succ_to_exit(i, j), suffix (F (Gmbrns(a, b))), f 	 prefix (f)), t)}
elseif (|Qprocessing(succ_to_proc_unit((i, j), prefix (f)))| +

|Qmigratable(succ_to_proc_unit((i, j), prefix (f)))| <
Gcapac(succ_to_proc_unit((i, j), prefix (f)))):

Qmigratable(a, b) := Qmigratable(a, b) \ {((i, j), p, f)}
Qprocessing(succ_to_proc_unit((i, j), prefix (f))) :=

Qprocessing(succ_to_proc_unit((i, j), prefix (f))) ∪
{((succ_to_proc_unit((i, j), prefix (f)), suffix (F (Gmbrns(a, b))), f 	 prefix (f)), t)}

fitness(Π�) := t

We are aware of unlikely but potentially possible situations in which the number
of time steps will infinitely grow without termination. This can happen due to
two reasons: A circular path of membranes whose capacity is exhausted might
cause a deadlock. Moreover, in case of utilisation of processing units assembling
two particles into a resulting product, some particles could stuck in a mem-
brane but their counterpart is permanently absent. These particles are unable
to get completely processed. We can cope with both situations by inspection of
Qprocessing and Qmigratable over time. If there is no modification of both matrices
over a long period of time steps, the fitness evaluation terminates by return of
∞.

3.5 Artificial evolution

For the artificial evolution, we induce a list (population) of grid exploring P sys-
tems (Πi

�) in which the index i identifies the individuals. After the initialisation,
the evolution loop drives the generations, see pseudocode:

g := 0; i := 1; φ0 := fitness(Π0
�)

while(i < population_size) :

Πi
� := duplicate(Π0

�)

mutate(Πi
�)

if (validity_check(m,n,Gmbrns, Hdist, Hroute)i) :

i := i+ 1

while(g < max_number_of_generations) :

φi := fitness(Πi
�) ∀i ∈ {1, . . . , population_size}

sort_by_fitness()

k := b0.8 · population_sizec
remove(Πj

�) ∀j ∈ {k, . . . , population_size}
j := 1

while (j < population_size) :

Πj
� := duplicate(Π

random([0..k−1])
� )

mutate(Πj
�)

if (validity_check(m,n,Gmbrns, Hdist, Hroute)i) :

j := j + 1

g := g + 1
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For duplication of an individual, we prepare the function duplicate. mutate
randomly decides whether a recombination or a shift occurs and carries out
the corresponding mutation. remove eliminates an individual from the list.
sort_by_fitness permutates the list of individuals in ascending fitness order.

4 Case Studies

4.1 Cell signalling cascades

duration of passage: 1
particle capacity: 70

processing duration: 1
a + b −> a

processing duration: 1
a + c −> a

processing duration: 1
* −> *

processing duration: 3
* −> *

passage of all particles: 88 times steps

passage of all particles: 60 times steps

A B

C D A

D

C

B B

A

D

C

B

A B

C D B

A

C

B D

d 8 CDC

c 12 B

a 12 ABDC b 12 A

d 8 CDC

c 12 B

a 12 ABDC b 12 A

initial grid

optimised grid receptor

microtubuli

organelle

compartment

A

A

B

B

B
C

C nucleus

D

Fig. 4. Signalling in an eucaryotic cell. Signalling molecules a, b, c, and d reach re-
ceptors at the outer cell membrane. From there, they enter the cell (for instance by
endocytosis) passing through a signalling cascade. Transported via microtubuli of the
cytoskeleton, they become successively processed within compartments and organelles
embedded into the cytosol. The initial grid predefines an abstracted cell structure which
exhibits a fitness of 88 time steps to process all signalling molecules in the desired man-
ner. Within A and B, complex formations are carried out incorporating b and c into a.
D represents the nucleus for gene expression. The resulting cell response leaves the cell
via C. There are two signalling pathways. One of them is initiated by a, the second one
by d. Evolutionary structural optimisation improves the fitness to 60 time steps.
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4.2 Manufacturing in a cabinet maker’s workshop

duration of passage: 1
raw product capacity: 40

* −> *; processing duration: 1
chipped wood compression and press sizing

* −> *; processing duration: 1
machine−based veneering

cutting, planing, and grinding
* −> *; processing duration: 3

drilling and screwing
* −> *; processing duration: 1

passage of all raw products: 61 time steps

initial grid

artificial evolution
grid optimised by

passage of all raw products: 50 time steps

manually
optimised grid

passage of all raw products: 48 time steps

B B

A

C

A

C

D D

A

B

C

D

D B

A

C

D

C

B A

B D

A

C

A

C

B D

b 10 BCA

a 10 DACA

b 10 BCA b 10 BCA

a 10 DACA a 10 DACA

Fig. 5. Cascaded processing of raw products in a cabinet maker’s workshop. Raw prod-
ucts called a and b have been delivered at different entries/exits of a factory work floor
depicted as grid. Processing units available in multiple copies allow for completion of
a specific work step. We distinguish four types of machines: A (drilling, screwing), B
(cutting, planing, grinding), C (veneering), and D (press sizing). Raw products a re-
quire the processing sequence DACA while those called b need to pass BCA. The initial
grid arranges all processing units at the outer walls. By evolutionary optimisation, we
observe a self-organisation of so-called production islands, clusters of processing units
corresponding to the individual workflows for both product lines. This diminishs the
overall execution time from 61 to 50 time steps. A manual optimisation reveals a best
possible result of 48 time steps. From a variety of independently conducted optimi-
sation studies starting from the same initial grid, we obtained numerous topological
arrangements. Interestingly, they achieved similar fitness values ranging from 50 to 52
which confirms the observation that artificial evolution typically ends up with results
close to but away from the global optimum.
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4.3 Alternative supermarket

passage of all customers: 146 time steps passage of all customers: 135 time steps

duration of passage: 1

customer capacity: 150

* −> *; proc. duration: 1
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* −> *; proc. duration: 1
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b 18 F

c 17 A

d 13 ACF

e 12 B

f 10 ABG

g  8 ABCF

h  8 BG

i  7 EF

j  6 ABCDEFGHIJ

k  5 GHIJ

l  3 DIF

m  1 EJFG

Fig. 6. Upper left grid: Initial placement of product groups in a typical German
supermarket with one central entry/exit, customer routes in anticlockwise orientation
and strictly separated classes of goods. In the example study, 131 customers reflecting
frequently observed selections of product combinations visit the supermarket which
requires 146 time steps in total. Lower left grid: After artificial evolution, a re-
arrangement of product placement reveals clusters of complementary products like
bread/breakfast cereals (B) with bargains (J) or frozen products (H) with confec-
tionery (G). Some products like fruit/vegetables (A) are offered at different places.
For the sample customers, the overall duration has been decreased to 120 time steps.
Upper right grid: The same initial placement of product groups and the same setting
of customers like in the upper left grid is considered but now the supermarket possess
two additional exits. This action on its own without further optimisation succeeds by
a corresponding fitness of 135 time steps. Lower right grid: The fitness can further
improve by artificial evolution finally resulting in 116 time steps. To this end, the origi-
nal ample straight-forward pathes have been replaced by more or less local round tours
preventing customers from crossing most parts of the supermarket. Especially products
in demand near the new exits can effectively accelerate the shopping process for many
customers in hurry. By leaving the supermarket earlier with all desired products, they
less intensively hamper exhaustive shoppers which in turn can also finalise faster.
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5 Discussion and Conclusions

The concept of topological grid optimisation by self-organising dynamical struc-
tures using grid-exploring P systems opens one more field of broad applications
of membrane-based computing inspired by bionics. Interestingly, formalisation of
modifiable spatial structures mainly exploits algebraic elements along with their
nested composition. Dynamics on that is typically driven by algorithmic denota-
tions in an imperatively or rule-controlled manner rather than prone to explicite
formulas or closed analytical terms. We believe that the inherent complexity of
structural dynamics suggests an incorporation of algorithmical components into
corresponding P systems. In this paper, we exemplified this idea by means of
artificial evolution which includes an algorithm for fitness evaluation. Its param-
eterisation follows common and empirically reliable assumptions. A population
size of 50 grids seems to be large enough to create a sufficient variety in which
80% survive for the next generation. No improvement of the best fitness for 100
generations implies termination of the artificial evolution. This turns out to be
enough to enable an effective fine tuning that can lead to grid structures with
improved quality. Dedicated formation of processing islands is an example for
this. We obtained the best experimental results by utilisation of both evolution-
ary operators (recombination, shift) in parity and by permanent survival of the
initial grid within the population. Unequivocally, the success of artificial evolu-
tion also depends on predefinition of a suitable initial grid with a balanced degree
of freedom. A free version of the software implemented in JavaScript is available
at http://www-user.tu-cottbus.de/~weberlea/gridtool/ and from the au-
thors upon request. This version supports processing units in passage mode as
well as incorporation in assembly mode. Further work is aimed at making the fit-
ness evaluation “smarter”. Instead of simply running each particle to the nearest
destination of the desired type, the underlying algorithm could interpret tem-
porary delays, particle jam, or overcharged processing units which ends up with
flexible generation of alternative bypass routes individually for each particle.
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Abstract. Kernel P systems (or kP systems) bring together relevant
features from several P systems flavours into a unified kernel model which
allows solving complex problems using a straightforward code program-
ming approach. kPWorkbench is a software suite enabling specification,
parsing and simulation of kP systems models defined in the kernel P–
Lingua (or kP-Lingua) programming language. It has been shown that
any computation of a kP system involving only rewriting and commu-
nication rules can be simulated by a family of Communicating Stream
X-Machines (or CSXM ), which are the core of FLAME agent based simula-
tion environment. Following this, kPWorkbench enables translating kP-
Lingua specifications into FLAME models, which can be simulated in a
sequential or parallel (MPI based) way by using the FLAME framework.
Moreover, FLAME GPU framework enables efficient simulation of CSXM
on CUDA enabled GPGPU devices. In this paper we present an ex-
tension of kPWorkbench framework to generate FLAME models from
kP–Lingua specifications including structural rules; and consider trans-
lation of FLAME specifications into FLAME GPU models. Also, we
conduct a performance evaluation regarding simulation of equivalent kP
systems and CSXM models in kPWorkbench and FLAME respectively.
Keywords: Membrane computing; kernel P systems; communicating
stream X-machines; agent-based simulation.

1 Introduction

Membrane computing is, to date, the youngest Natural Computing discipline.
It was introduced in 1998 by Gheorghe Păun, as a paradigm which addresses
models taking inspiration form the structure and functioning of cells present in
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living beings, considering such cells as living entities themselves able to process
and generate information.

Computing devices of membrane computing are called membrane systems or
P systems [22]. Basic ingredients of a P system are (i) a membrane structure,
consisting in a set of regions delimited by membranes; and (ii) multisets of
objects placed within the regions. Objects may be transformed according to some
evolution rules, which are applied in a non-deterministic maximally parallel way
(emulating how chemical reactions take place among compounds). To emulate
cell membrane permeability, evolution rules can transform existing objects within
a region and, additionally, transfer them among adjacent regions – objects pass
through the membrane separating the regions.

Basically, there are three ways to categorize membrane systems: cell-like P
systems, tissue–like P systems and neural-like P systems. In cell-like P systems,
membranes are arranged in a hierarchical way, inspired by the inner structure of
the biological cells. In tissue-like P systems, cells are set in nodes of a directed
graph, inspired from the cell inter-communication in tissues. Similarly, in neural-
like P systems, cells are arranged in nodes of a directed graph, taking inspiration
from the way in which neurons exchange information by the transmission of elec-
trical impulses (spikes) along axons. Neither tissue-like nor neural-like consider
the possibility of cells containing inner compartments, that is, in such variants
cells are elemental compartments.

Kernel P systems (or kP systems) [6] are a novel variant of membrane systems
aiming to bring together relevant features from several P systems flavours into
a unified kernel model which allows solving complex problems using a straight-
forward code programming approach. In particular, a kP system model is defined
by placing compartment type instances in the nodes of a dynamic graph. Each
type represents a kind of elemental compartment which is associated with a se-
quence of rule blocks. Following this, each rule block is defined by both a set
of guarded evolution rules and an execution strategy. A guarded rule associated
to a compartment type is an extension of a classic evolution rule where a new
syntactical element, the guard, is added. A guard is a logical condition over the
multiplicity of objects belonging to the multiset associated to any instance of the
corresponding type. Evolution rules may be either rewriting and communication
rules or structure changing rules (cell division, cell dissolution, link creation or
link destruction rules). A given compartment instance executes its rule blocks
sequentially, with applicable rules to be executed for each block according to the
its own execution strategy.

P–Lingua framework [27], possibly the most widely known simulation soft-
ware for membrane computing, provides support for a reduced version of kP
systems, known as simple kernel P systems. As a separate effort from that of P–
Lingua, a brand new software project, known as kPWorkbench [7, 28], was created
aiming to provide full support for kP systems as well as advanced model check-
ing features. kPWorkbench allows the specification of kP systems in the kernel
P–Lingua (or kP-Lingua) programming language, which share some similarities
with the original P–Lingua one. kPWorkbench framework features a native sim-
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ulator, allowing the simulation of kP system models written in kP–Lingua. On
the other hand, kPWorkbench’s model checking environment permits the formal
verification of kernel P system models.

Regarding parallel simulation of kP systems, in [20] it was shown that any
computation of a kP system involving only rewriting and communication evolu-
tion rules can be simulated by a family of Communicating Stream X-Machines
(or CSXM ), which are extended forms of state machines, having memory and
processing functions. CSXM can be efficiently simulated in a parallel way by
means of two template-based software frameworks called FLAME (Flexible Large-
Scale Agent Modelling Environment) [29] and FLAME GPU [30]. FLAME allows
MPI [31] based efficient simulation of CSXM models written in the FLAME agent-
based specification language, while FLAME GPU allows CUDA (Compute Uni-
fied Device Architecture) [12, 19, 21, 32] based efficient simulation of CSXM
models written in the FLAME GPU specification language, an extension/variant
of the FLAME one. Both FLAME and FLAME GPU have been used in several
experiments, which were performed on High Performance Computing (HPC)
platforms due to the scale of the associated models and, subsequently, resource-
intensive simulation tasks. Some examples include modelling oxygen-responsive
transcription factors in Escherichia coli [1] or the complex cellular tissue simu-
lation [24].

Following this, in [8] kPWorkbench was extended to provide automated trans-
lation from kP systems models written in kP–Lingua into CSXM models written
in FLAME specification language. This translation addressed kP systems involv-
ing only rewriting and communication evolution rules, with the transformation
of systems involving structural rules left as an open issue. Moreover, no support
for automated translation to FLAME GPU was provided either.

In this work, we take a step forward regarding the aforementioned results
tackling new challenges. Firstly, we address an extension of the kPWorkbench
framework to generate FLAME models from kP–Lingua specifications includ-
ing structural rules such as division and dissolution rules. Secondly, we address
the translation of FLAME specifications into FLAME GPU models. Finally, we
conduct a performance study regarding the simulation of equivalent kP systems
and CSXM models in kPWorkbench and FLAME (serial and parallel mode) re-
spectively. This is conducted following the trail of [2] and [13]. In particular, [13]
presents a first approach of implementing the pulse generator model in FLAME
GPU [13], conducting a performance comparison with FLAME. Remarkably, the
FLAME GPU model used was manually translated, since there was no public
available tool to automate the conversion.

This paper is structured as follows. Section 2 outlines previous related work.
Section 3 introduces the theoretical background. Section 4 presents our modelling
approach in FLAME, while Section 5 presents the possible ways of extending it
to FLAME GPU. A case study illustrating the cited approach is discussed in
Section 6. Finally, conclusions and further work are drawn in Section 7.
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2 Related Work

In this Section, we briefly outline the state-of-the art of parallel simulation of P
systems on High Performance Computing (HPC) platforms.

Both P–Lingua and kPWorkbench, as a vast majority of software tools for
membrane computing, implement the simulation algorithms in a sequential way.
This effectively neglects the inherent parallelism of P systems, and leads to non-
efficient simulations from the computational complexity point of view. Fortu-
nately, an increasing variety of simulators specially intended to run on massively-
parallel platforms have been developed along the years. Such HPC platforms
include Field Programmable Gate Array circuits (FPGAs) [23], microcontrollers
[9], computer clusters [3, 4, 26] and General–Purpose Graphic Processing Unit
(GPGPU) devices.

In particular, GPGPU hardware comprises a very affordable technology, pro-
viding in a single device hundreds of massively parallel processors supporting sev-
eral thousand of concurrent threads. To date, many general purpose applications
have been successfully migrated to GPGPU platforms, showing good speed-ups
compared to their corresponding sequential versions. Two are the main pro-
gramming models enabling software development oriented to GPGPUs. On the
one hand, CUDA (Compute Unified Device Architecture) programming model,
[12, 19, 21, 32] and on the other hand, Open Computing Language (OpenCL)
framework [18, 25, 33].

An updated exhaustive list of parallel simulators for P systems regarding
the aforementioned approaches can be consulted in [14], with the reader also
encouraged to check [5] and [15], from where an encyclopaedic knowledge can be
obtained. Finally, a couple of surveys summarising the topic can be consulted in
[16, 17].

With respect to parallel simulation of kernel P systems, to the best knowledge
of the authors, there are only a few related software applications due to the
novelty of the model. On the one hand, a parallel implementation on GPGPU
architectures using CUDA is reported in [11]. On the other hand, regarding the
simulation of kP systems with agents, FLAME and FLAME GPU simulation
platforms are detailed in [2, 13, 20], as we discussed above.

3 Background

This Section gives the basic definitions and major results regarding kernel P
systems and communicating stream X-machines, following largely from [6, 20].
For this, we will assume that the reader is familiar with usual notations from
formal languages, membrane computing and finite automata domains and refer
to [6, 10, 20] for further technical details and examples.

We first begin recalling the formal definition of kernel P systems (or kP
systems).

Definition 1. A kP system of degree n is a tuple kΠ = (A,µ,C1, . . . , Cn, i0),
where
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– A is a finite set of elements called objects;
– µ defines the membrane structure, which is a graph, (V,E), where V are

vertices representing components (compartments), and E edges, i. e., links
between components;

– Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a
compartment type, ti, from a set T and an initial multiset, wi,0 over A; the
type ti = (Ri, ρi) consists of a set of evolution rules, Ri, and an execution
strategy, ρi;

– i0 is the output compartment where the result is obtained.

A kernel P system can have several compartment instances of the same type:
while they share the same set of rules and execution strategies, they may have
different multiset of objects at different computation steps and different neigh-
bours according to the graph relation specified by (V,E). Within the kernel P
systems framework, the following kinds of evolution rules have been considered
so far:

– rewriting and communication rule: x −→ y{g}, where x ∈ A+ and y rep-
resents a multiset of objects over A∗ with potential different compartment
type targets (each symbol from the right side can be sent to a different com-
partment, specified by its type; if more compartments of the same type are
linked to the current compartment, then one is randomly chosen).
Compared to cell-like P systems, the targets in kP systems are the type of
compartments to which the objects will be sent, not particular instances.
Also, for kP systems, complex guards can be represented, using multisets
over A with relational and Boolean operators.
For example, rule r : ab −→ bc{≥ a3∧ < b2} can be applied if and only if
the current multiset includes the left hand side of r, i. e., ab and the guard
holds: the current multiset has at least 3 a’s and less then 2 b’s.

– structure changing rules: membrane division, membrane dissolution, link cre-
ation and link destruction rules, which all may also incorporate complex
guards and that are covered in detail in [6].

As we stated above, besides of a set of evolution rules, each compartment
type in a kP system has an associated execution strategy. Execution strategies
offer a lot of flexibility to the kP system designer, as the rules corresponding to
a compartment can be grouped in several blocks, every block having one of the
following strategies:

– sequential : if the current rule is applicable, then it is executed, advancing
towards the next rule/block of rules; otherwise, the execution terminates;

– choice: a non-deterministic choice within a set of rules, one and only one
applicable rule will be executed if such a rule exists, otherwise the whole
block is simply skipped;

– arbitrary : the rules from the block can be executed zero or more times by
nondeterministically choosing any of the applicable rules;

– maximal parallel : the classic execution mode used in membrane computing.
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On the other hand, a stream X-machine is an extended form of finite state
machine in which the transitions are labelled by (partial) functions (called pro-
cessing functions) instead of simple symbols. Remarkably, the machine has a
memory M , that can be imagined as the domain of the variables of the system
to be modelled. The input received by the machine is processed in order: depend-
ing on the current state of the machine and the input symbol to be processed,
one of the processing functions will read the current input symbol, discard it
from the input sequence and produce an output symbol while (possibly) chang-
ing the value of the memory and taking the machine to a different state. Finally,
if several processing functions can compute the same input, then one of them
is randomly chosen (non-determinism). Formal definition of stream X-machines
follows:

Definition 2. A Stream X-Machine (SXM for short) is a tuple Z = (Σ,Γ,Q,M,
Φ, F, I, T,m0), where:

– Σ and Γ are finite sets called the input alphabet and output alphabet respec-
tively;

– Q is the finite set of states;
– M is a (possibly) infinite set called memory;
– Φ is the type of Z, a finite set of function symbols. A basic processing function
φ : M ×Σ −→ Γ ×M is associated with each function symbol φ.

– F is the (partial) next state function, F : Q −→ 2Q. As for finite automata,
F is usually described by a state-transition diagram.

– I and T are the sets of initial and terminal states respectively, I ⊆ Q, T ⊆ Q;
– m0 is the initial memory value, where m0 ∈M ;
– all the above sets, i. e., Σ,Γ,Q,M,Φ, F, I, T , are non-empty.

Several theoretical frameworks have been developed addressing communi-
cating stream X-machines, that is, concurrent systems where different stream
X-machines work in parallel exchanging data via communication channels. In
what follows, we recall the one from [10], which is the closest to the the imple-
mentation of FLAME, according to [20].

Definition 3. A Communicating Stream X-Machine System (CSXMS for short)
with n components is a tuple Sn = ((Zi)1≤i≤n, E), where:

– Zi = (Σi, Γi, Qi,Mi, Φi, Fi, Ii, Ti,mi,0) is the SXM with number i, 1 ≤ i ≤ n.
– E = (eij)1≤i,j≤n is a matrix of order n×n with eij ∈ {0, 1} for 1 ≤ i, j ≤ n,
i 6= j and eii = 0 for 1 ≤ i ≤ n.

The CSXMS works as follows:

– Each individual Communicating SXM (CSXM for short) is a SXM plus an
infinite input queue (FIFO structure); the CSXM consumes inputs from its
queue.

– An input symbol received from the external environment (also a FIFO struc-
ture) will move to the input queue of one CSXM, if it is contained in its input
alphabet. If more than one CSXM satisfies such condition, then the symbol
will enter the input queue of one of these in a non-deterministic fashion.
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– Each pair of CSXMs, say Zi and Zj , have two unidirectional communication
channels. The communication channel from Zi to Zj is enabled if eij = 1
and disabled otherwise

– There exists the possibility for an output symbol produced by a CSXM, say
Zi, to pass to the input queue of another CSXM, say Zj , providing that the
communication channel between them is enabled, and if the symbol is in-
cluded in the input alphabet of Zj . If several CSXMs satisfy these conditions
one of them is non-deterministic chosen, whereas if none exists the symbol
goes to the output environment (also a FIFO structure).

One important result proving the possibility of simulating kP systems with
CSXMs is given in the following theorem from [20].

Theorem 1. For any kP system, kΠ, of degree n and using only rewriting and
communication rules, there is a communicating stream X-machine system, Sn+1,
with n+ 1 components such that for any multiset w computed by kΠ there is a
complete sequence of transitions in Sn+1 leading to s(w).

In this Theorem, w is the final configuration of the kP system, w = (w1, . . . , wn),
where each wi represents the final multiset occurring in compartment i. On the
other hand, s(w) corresponds to any of the strings obtained by concatenating
the symbols occurring in w. Remarkably, the Proof of this Theorem, as shown
in [20], suggests the manner in which a FLAME model for a given kP system
can be constructed. We will briefly examine this in the next Section.

4 Modelling Kernel P Systems with Structure Changing
Rules in FLAME

In this Section, we describe how kernel P systems incorporating structure chang-
ing rules can be mapped into FLAME specification language. We start recalling
the way in which Communicating Stream X-Machines Systems are defined in
that language.

FLAME framework provides an environment for defining communicating
agents, specified in an XML format, which contains information regarding their
memory variables, name of processing functions, message structures that can be
exchanged for communication, etc. FLAME uses an implementation of CSXMs
in which: (a) the associated automaton of each CSXM has no loops (this ensures
that the execution will end after a finite number of processing functions calls);
(b) the CSXMs receive no inputs from the environment – inputs are usually
those produced in the previous computation step or the ones defined in the ini-
tial configuration file; and (c) the processing function scripts are written in C
files.

The input Communicating Stream X-Machines System is defined in XMML
format (X-Machine Mark-up Language), which is translated by FLAME into
simulation program source code, either in its serial or parallel (MPI) version.
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Next, this program can be compiled together with the agent processing func-
tions script files (written in C) by any C/C++ compiler, giving place to simu-
lation executable code can be run, in the case of the parallel version, on High
Performance Computing (HPC) platforms.

To take advantage of the aforementioned efficient simulation capability of
FLAME, in [8] kPWorkbench was extended to provide automated translation
from kP systems models written in kP–Lingua into CSXM models written in
FLAME specification language. This translation addressed kP systems involving
only rewriting and communication evolution rules, with the transformation of
systems involving structural rules left as an open issue. In what follows, we
outline the main ideas in which such transformation process relies on (additional
details can be found in [8, 13, 20]):

– Each compartment type in the kP system is associated an agent type in
FLAME, while each compartment type instance is associated an agent of
the corresponding agent type.

– Multisets of objects from each compartment type instance are stored in the
corresponding agent memory using, in general, dynamic arrays of complex
data types.

– Execution strategies (sequential, choice, arbitrary, maximal parallel) of the
compartment types are encapsulated in C functions.

– Communication between compartments is materialized by using FLAME’s
agents message passing mechanism. In particular, communication among
linked compartments is ensured by means of message filtering, while the
non-deterministic choice among one of the possible target compartments is
ensured by means of non-deterministic message processing.

– Finally, the graph structure of the kP system, which maps the links among
compartments, can be stored in a distributed way among each agent memory
as a dynamic array containing the identifiers of the agents representing the
compartments sharing an active link with the compartment represented by
the current agent.

Next, we address how kP systems incorporating structural rules (membrane
division, membrane dissolution, link creation, link destruction) can be translated
into FLAME. Let us notice that previous experiments regarding kP systems to
FLAME translation, such as the ones references above, did not considered kP
systems having structural rules. We start describing the process for membrane
dissolution, link creation and link destruction, which is quite straightforward
compared to that of membrane division:

– Membrane dissolution can be implemented by either (1) extending the agent
memory with a flag-type data value storing whether the corresponding com-
partment is active or has been dissolved; or (2) removing the correspond-
ing FLAME agent, when the membrane dissolution takes place. The first
approach should be used when keeping trace of kP system evolution is re-
quired and, subsequently, agent deletion is not aimed. In both approaches,
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each time that a dissolution takes place, all the agents having connections
to the “dissolved” agent have to be notified via messages, in order to update
their connection arrays.

– Link creation and link destruction rules can be implemented by adding or
removing elements in the connection arrays accordingly.

In what follows we address transformation of kP systems involving division
rules. Translation of such rules is the most challenging to implement and, con-
sequently, we devote a specific part of this paper to its study.

4.1 Implementing kP Systems Division Rules in FLAME

Let us recall that, in general, P systems operate by applying rewriting rules
defined over multisets of objects associated to the different membranes, in a
synchronized non-deterministic maximally parallel way. P systems show a double
level of parallelism: a first level comprises parallel application of rules within
individual membranes, while a second level comprises all the membranes working
simultaneously, that is, in parallel. These features make P systems powerful
computing devices. In particular, the double level of parallelism allows a space-
time trade-off enabling the generation of an exponential workspace in polynomial
time. This is usually accomplished by applying iteratively membrane creation
rules, such as division rules.

As such, P systems are suitable to tackle relevant real-life problems, usually
involving NP-complete problems. Moreover, P systems are excellent tools to in-
vestigate on the computational complexity boundaries, in particular tackling the
P versus NP problem. In this way, by studying how the ingredients relative to
their syntax and semantics affect to their ability to solve NP–complete problems
in a feasible way, computational properties, sharper frontiers between efficiency
and non-efficiency can be discovered.

In order to take advantage of the full power of P systems, it is required to
simulate them on HPC platforms, which can suitably manage the demanding
resource requirements of their inherent double parallelism. In the particular case
of kernel P systems, this involves efficiently simulating division rules on massively
parallel devices. This can be accomplished by transforming the corresponding
kP systems models into FLAME specification language.

Regarding this, FLAME inherently favours the possibility of simulating mem-
brane division, since it supports adding new agents during the simulation exe-
cution in such a way that all the newly created agents are introduced at the
beginning of the next iteration. Nevertheless, several tasks have to be performed
to properly simulate membrane division of a given compartment:

– The newly created agent memory has to be initialized with the data corre-
sponding to the multiset of the underlying newly created compartment.

– The connection arrays of both the newly created agent and each agent rep-
resenting a compartment linked to the original dividing one have to be up-
dated. As such, it is required to implement a mechanism for the newly created
agents to be associated unique identifiers.
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– This is accomplished by creating in the system a single instance of a new
agent type, called the instance manager. This agent will receive and process
requests of new identifiers from agents representing dividing compartments
via message passing. The instance manager will then provide – again via
message passing – a new identifier that will be used by the “dividing” agent
to initialize the newly created agents and to send a connection array update
signal to all its linked agents.

Fig. 1 shows the visual representation of a FLAME model incorporating dif-
ferent kind of translated evolution rules. In particular, this state machine visuali-
sation is automatically drawn by the FLAME editor, based on the kPWorkbench
generated model of a kP system solving SubSetSum. States are represented with
ellipses, processing functions with rectangles, and messages exchanged between
agents with green parallelograms.

Comparing the Main and Output compartments in Fig.1, one can check that
the Main compartment has additional states and transitions corresponding to the
application of division rules, preliminaries for the creation of new membranes,
request identifiers or receive identifiers messages.

It is worth pointing out that a FLAME agent structure will vary depend-
ing on the execution strategies and blocks from its corresponding kP system
compartment. For example, comparing the kP–Lingua specification from Fig.
2 and its corresponding FLAME model in Fig. 1, one can easily identify that
each choice block has a corresponding processing function and next state in the
CSXM. Similarly, the execution order respect of several strategies is reflected in
the agent structure. In addition, ramifications may appear for the cases when a
structural rule is chosen to be applied.

Following the process outlined above, the existing kP–Lingua to FLAME
kPWorkbench translator module has been extended to support translation of
division and dissolution rules with the corresponding algorithm included as an
Appendix at the end of this paper. The new module has been successfully used
to generate FLAME models for instances of SubSetSum. Such instances have
then been used in the experiments detailed in Section 6.

5 Adapting the Modelling Approach to FLAME GPU

In this Section we briefly discuss some design constraints when translating
FLAME models to FLAME GPU and recommended workarounds.

Although FLAME GPU framework is an extension of FLAME, models de-
signed for FLAME are not supported by FLAME GPU. Apart from small dif-
ferences that could be easily tackled, e.g. using a slightly different XML schema,
with different namespace or tag names, there are also important differences in
the data types which can be used by each environment.

In order to address these issues, some design guidelines have to be taken into
account, as noted in [13], where authors manually translated a model of a pulse
generator from FLAME to FLAME GPU, in order to have it implemented in
both frameworks and compare their performance with kPWorkbench.
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Fig. 1: Graph of the states, functions and messages between agents, correspond-
ing to the FLAME model for Subset Sum problem, having two agent types for
the compartments types Main and Output, plus and an additional Main In-
stance Manager agent in charge of the Main compartment division process (for
allocation of new identifiers)

Firstly, memory in FLAME GPU is pre-allocated due to CUDA programming
model constraints. As such, agents memory neither support dynamic arrays nor
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fixed arrays with complex types. The recommender workaround is the serializa-
tion of dynamic arrays (with/without composed objects) which appear in the
FLAME models into static arrays of basic types, recommended to have fixed
length equal to a power of 2.

Secondly, although in FLAME it is possible to add several new agents in
one step, which is useful for example when a membrane is divided into 3 new
compartments, in FLAME GPU only one agent is possible to be added per func-
tion. Consequently, the recommended workaround implies creating additional
functions in the X-machine structure, to add the remaining membranes to be
created.

Finally, contrary to FLAME, in FLAME GPU each agent can only create a
single message, which clash with communication rules semantics, where multiple
compartments may receive different objects. The recommended workaround is
to expand the memory space for each message, allowing it to contain data for
multiple targets.

6 Case Study: Subset Sum Problem

As previous work on modelling kP systems with FLAME [2, 20] and FLAME
GPU [13] addressed models with communication and rewriting rules, in this
Section we will illustrate the case of a kP–Lingua model consisting in a kP
system family solving SubSetSum, which involves division rules as well as other
kernel P systems specific features, such as presence of guards plus sequential and
choice execution strategies.

The SubSetSum problem can be roughly described as: “Given the set Sn =
{a1, a2, . . . , an}, is there a subset of Sn, having the sum of elements equal to x?”
Regarding to our model, in order to ensure that the computation will continue
until all the possible membrane divisions have been applied, we have considered
Sn = {1, 2, . . . , n} and the expected sum x = n(n + 1)/2, which will return
the yes answer in this case. The kP-Lingua specification considered for n = 4
is given in Fig. 2, however corresponding files have been generated for each
n ∈ {2, 3, . . . , 20}, a complete folder containing all the files and scripts needed
to run the experiments is provided for downloading purposes 5.

The model shown in Fig. 2 is a slightly adapted version from that of [8],
and was chosen because of its programming-like structure (sequential blocks)
and its simplicity regarding beforehand computation of the number of expected
execution steps (n+1) and number of membranes in the last configuration (2n +
1). Two compartment types are used, named Main and Output, respectively. The
Main compartment type contains two choice blocks to (1) generate the positive
answer when required; and (2) generate the subsets to be checked by applying
division rules. The Output compartment type take care of (1) controlling the
execution by means of a counter object; and (2) generating the negative answer
when required.

5
https://www.dropbox.com/sh/dfrxceu4d3d9hhl/AACVTnHyexphjyrJLELNd9-ua?dl=0
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Simplicity of the model eased the experimentation process, since the goal
was to conduct non-deterministic experiments but assuring that the computa-
tion would end after the same number of steps, with a maximum number of
membranes created by division, but different execution traces each time.

type Main {

choice {

= 10x: a -> {yes} (Output) .

> 10x: a -> halt .

}

choice {

!r1: a -> [a, r1][x, a, r1] .

!r2: a -> [a, r2][2x, a, r2] .

!r3: a -> [a, r3][3x, a, r3] .

!r4: a -> [a, r4][4x, a, r4] .

}

}

type Output {

choice {

start -> step .

<5step : step -> 2step .

<yes & =5step: step -> 2step, no, halt .

}

}

main {a} (Main) - output {start} (Output) .

Fig. 2: kP–Lingua specification for SubSetSum (n=4)

In order to assess the performance of the different modelling approaches
and implementations for kPWorkbench and FLAME, we conducted several ex-
periments involving different instances of the presented kP system solution to
SubSetSum, and their translated FLAME counterparts, respectively. With re-
spect to FLAME, besides the serial simulation of the models, which was ad-
dressed in previous works like [2, 13, 20], also the parallel MPI based simulation
provided by FLAME was considered. Since FLAME does not support MPI sim-
ulation in Windows environments, the Sevilla HPC Server [34] mulhacen was
configured with FLAME and Open MPI [35] to conduct the experiments.

Comparisons were realised between average execution times for: kPWork-
bench, FLAME in serial mode and FLAME in parallel version, run with different
number of processors, NP ∈ {2, 3, 4}, running all on the same machine, a Xeon
Server, having 4 cores, Intel i5 Xeon E3-1230V3 @ 3.30GHz, main memory 32
GBytes DDR3 @ 2400Mhz.

For each instance of SubSetSum, n ∈ {2, 3, . . . , 20} and each tool configu-
ration, 3 runs were considered. In each case the user time + system time was
recorded and the average total time for these three runs was considered.
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n Compart. Flame kPWorkbench Flame NP 2 Flame NP 3 Flame NP 4

2 4 0.00 0.09 0.00 0.00 0.18
3 8 0.00 0.09 0.00 0.00 0.22
4 16 0.00 0.09 0.00 0.00 0.18
5 32 0.00 0.10 0.00 0.00 0.23
6 64 0.01 0.11 0.19 0.19 0.21
7 128 0.02 0.14 0.21 0.25 0.28
8 256 0.05 0.15 0.18 0.27 0.43
9 512 0.10 0.24 0.27 0.43 0.51
10 1024 0.15 0.36 0.47 0.67 0.85
11 2048 0.26 0.65 0.82 1.10 1.74
12 4096 0.53 1.29 1.52 2.19 3.42
13 8192 1.04 2.78 3.03 4.74 6.33
14 16384 2.33 6.73 6.47 9.59 14.91
15 32768 5.30 17.69 15.03 22.73 30.10
16 65536 13.41 52.56 35.56 53.58 70.36
17 131072 36.17 202.01 89.81 138.66 187.16
18 262144 106.16 832.31 250.45 387.24 507.62
19 524288 352.28 3388.19 793.75 1211.27 1609.34
20 1048576 1088.26 13605.23 3575.90 5787.97 7885.79

Table 1: Average times for solving Subset sum problem for different n values

Table 1 shows the statistics after 3 runs. Columns have the following mean-
ing: n value; the number of compartments resulted from division at the end of
computation (2n of type Main); average time needed by Flame serial version,
by kPWorkbench, by Flame parallel version using 2, 3 or 4 processors. All the
times are given in seconds and were measured by /usr/bin/time -v, in order
to have the same metric for all the tools.

Tools configuration. Because all the execution times would have been in-
creased by FLAME saving to disk all the intermediary configurations, we have
chosen to output the same amount of information with each tool (chosen rules
and new configurations) and save only the last configuration file in XML format
for the FLAME simulation.

Comparing our case study with previous experiments assessing FLAME and
kPWorkbench performance [2, 13], this is the first time when FLAME is not
saving large XML files after each iteration. This modification, realised in order
to have equal conditions, is explaining why the FLAME simulator is obtaining
better times in this case study, compared to kPWorkbench, although in previous
experiments it has been different. Also, another important difference is the type
of the model, previous experiments did not use division and this could result in
different execution times.

As in the previous experiments only the serial version of FLAME was em-
ployed, we lack of other results to compare with, in order to address the question:
why are the times obtained in the parallel version much higher than the serial
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version? One explanation could be that model chosen does not have very complex
processing functions, so the time needed for communication between processors
is increasing the total time needed, without benefiting from the parallelism. An-
other explanation could be some tweaking settings of FLAME or Open MPI,
which could be better configured, in order to get the best performance for the
parallel implementation.

Also, in Table 1 we have provided the number of compartments for each n
as a rough estimator of the space used: with a larger n the number of rules
and also of object types for the compartment increases. So, a larger number of
compartments comes also with more rules and more object types to be stored.

In order to have a better visualisation of the experimental results, the data
from Table 1 has been represented in Fig. 3. The left plot shows the average time
versus the number of compartments, the right plot displays for the horizontal
axis the logarithmic scale of its left counterpart.

Fig. 3: Comparative simulation results for kPWorkbench, FLAME serial and
parallel versions, with NP 2, 3 and 4

Unfortunately, at the time of writing this paper, there are neither public
available tools for conversion from kP-Lingua specifications to FLAME GPU,
nor from FLAME models to FLAME GPU. This is the reason why FLAME
GPU models were not considered in the evaluation, although we have studied
this possibility. However, as reported in a previous article [13], where a pulse
generator model was translated manually to FLAME GPU, better execution
times are expected for GPU version, but the construction of the model is much
more tedious compared to the FLAME version.

7 Conclusions and Further Work

This paper presents recent efforts towards modelling of kernel P systems with
structural rules in two agent based simulation environments, known as FLAME
and FLAME GPU. In this context, we have extended the module of kPWork-
bench for automated generation of FLAME models from kP–Lingua specifica-
tions to consider kP systems with division and dissolution rules. We also pro-
vided an overview of the differences between FLAME and its GPU version, and
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outlined the main issues that should be taken into account for a model transfor-
mation.

Finally, we have conducted experiments to compare the performances of
FLAME, serial and parallel versions, with respect to kPWorkbench, for a kernel
P system with division rules.

As future work, we will tackle the automated translation from either kP-
Lingua specifications or their FLAME counterparts models to FLAME GPU
specifications, based on the main ideas presented here. Also we will address
alternative MPI implementations and realise performance comparisons about
the application of division and dissolution rules on more complex examples.
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Dragomir, M. J. P. Jiménez, and M. Gheorghe. Kernel P Systems: Ap-
plications and Implementations. In. Proceedings of The Eighth Interna-
tional Conference on Bio–Inspired Computing: Theories and Applications
(BIC-TA), 2013. Z. Yin, L. Pan, and X. Fang, editors. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 1081–1089.

[12] D. B. Kirk and W. W. Hwu. Programming massively parallel processors:
a hands-on approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st ed., 2010.

[13] S. Konur, M. Kiran, M. Gheorghe, M. Burkitt, and F. Ipate. Agent-
Based High-Performance Simulation of Biological Systems on the GPU.
In 17th IEEE International Conference on High Performance Computing
and Communications, HPCC 2015, 7th IEEE International Symposium on
Cyberspace Safety and Security, CSS 2015, and 12th IEEE International
Conference on Embedded Software and Systems, ICESS 2015, New York,
NY, USA, August 24-26, 2015. IEEE, 2015, pp. 84–89.
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Algorithm 1 Transforming a kP Systems into Flame algorithm

1: procedure AddTransition(startState, stopState, strategy, guard)
. procedure adding the appropriate transition strategy to the current agent stack given as parameter and

FLAME function applying rules conforming to execution strategy

. guard is an optional parameter that represents the transition guard
2: if strategy is Sequence then
3: agentTransitions.Push(startState, stopState, SequenceFunction, guard)

. FLAME function SequenceFunction applies rules in sequentially mode
4: else if strategy is Choice then
5: agentTransitions.Push(startState, stopState, ChoiceFunction, guard)

. FLAME function ChoiceFunction applies rules in choice mode
6: else if strategy is ArbitraryParallel then
7: agentTransitions.Push(startState, stopState, ArbitraryParallelFunction, guard)

. FLAME function ArbitraryParallelFunction applies rules in arbitrary parallel mode
8: else if strategy is MaximalParallel then
9: agentTransitions.Push(startState, stopState, MaximalParallelFunction, guard)

. FLAME function MaximalParallelFunction applies rules in maximal parallel mode
10: end if
11: end procedure
12:

. main algorithm for traforming a kP system into Flame
13:
14: agentsStates.Clear()
15: agentsTransitions.Clear()

. empty state and transition stacks of agents
16: foreach membrane in kPSystem do

. for each membrane of kP system build corresponding agent, consisting of states and transitions
17: agentStates.Clear()
18: agentTransitions.Clear()

. empty state and transition stacks of agent that is built for the current membrane
19: agentStates.Push(startState)

. adding the initial state of the X machine
20: agentStates.Push(initializationState)

. adding initialization state
21: agentTransitions.Push(startState, initializationState, IsNotPreviousApplyStructureRule)

. adding transition between the initial and initialization states; this transition performs objects allocation
on rules and other initializations; if the agent is active, no rule of structure has been applied in the
previous iteration

22: agentTransitions.Push(startState, endState, IsPreviousApplyStructureRule)
. adding transition between the initial and end state; if the agent is inactive, a rule of structure has

been applied in the previous iteration
23: foreach strategy in membrane do

. for each strategy of the current membrane the corresponding states and transitions are built
24: previousState = agentStates.Top()

. the last state is stored in a temporary variable
25: if is first strategy and strategy.hasNext() then

. when the strategy is the first of several, state and transition corresponding to the execution strategy
are added

26: agentStates.Push(strategy.Name)
27: AddTransition(previousState, strategy.Name, strategy)
28: else
29: if not strategy.hasNext() then

. if it is the last strategy, the transition corresponding to the execution strategy is added
30: AddTransition(previousState, completedExecutionState, strategy)
31: else



Algorithm 1 Transforming a kP Systems into Flame algorithm (continued)

32: agentStates.Push(strategy.Name)
. add corresponding state of the current strategy

33: if strategy.Previous() is Sequence then
. verify that previous strategy is of sequence type

34: AddTransition(previousState, strategy.Name, strategy, IsApplyAllRules)
. add transition from preceding strategy state to the current strategy state. The guard is

active if all the rules have been applied in the previous strategy transition.
35: agentTransitions.Push(previousState, completedExecutionState, IsNotApplyAllRules)

. add transition from preceding strategy state to state in which all strategies were finalized.
The guard is active if not all rules have been applied in the previous strategy transition

36: else
37: AddTransition(previousState, strategy.Name, strategy)

. add transition from preceding strategy state to the current strategy state
38: agentTransitions.Push(previousState, completedExecutionState, IsApplyStructureRule)

. add transition from preceding state strategy to state in which all strategies were finalized.
The guard is active when the structural rule has been applied on the previous strategy
transition

39: end if
40: end if
41: end if
42: end for
43: agentStates.Push(completedExecutionState)

. adding state in which all strategies were finalized
44: agentStates.Push(PrepareTheNewMembranes)

. adding state in which id(s) is required for newly created membrane(s)
45: agentTransitions.Push(completedExecutionState, PrepareTheNewMembranes, IsApplyStructureRule)

. add the transition to the prepare the new membranes state on which id(s) is required for newly created
membrane(s), if the structure rule has been applied. The request is made through messages to the
instance manager, agent that allocate new IDs for new agents of current type.

46: agentStates.Push(CreateNewMembrane)
. adding state in which IDs are received through messages from instance manager agent and the new

agents are created
47: agentTransitions.Push(PrepareTheNewMembranes, CreateNewMembrane)

. on this transition the new agents are created with the new received ids
48: agentStates.Push(applyChangesState)

. adding state in which changes produced by the applied rules are committed
49: agentTransitions.Push(completedExecutionState, applyChangesState, IsNotApplyStructureRule)

. add transition to the apply changes state where changes produced by rules are applied, if has not been
applied any structure rule

50: agentTransitions.Push(applyChangesState, receiveState)
. adding transition on which changes produced by the applied rules are committed

51: agentStates.Push(receiveState)
. add state that receives objects sent by applying the communication rules in other membranes

52: agentTransitions.Push(receiveState, endState)
. add transition to the end state that receives objects sent by applying the communication rules in other

membranes
53: agentStates.Push(endState)

. add the final state
54: agentsStates.PushAll(agentStates.Content())

. add the contents of the stack that holds the current agent states to the stack that holds the states of all
agents

55: agentsTransitions.PushAll(agentStates.Content())
. add the contents of the stack that holds the current agent transitions to the stack that holds the transitions

of all agents
56: end for
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Abstract. We prove that non-confluent (i.e., strongly nondeterministic)
P systems with active membranes working in polynomial time are able
to simulate polynomial-space nondeterministic Turing machines, and
thus to solve all PSPACE problems. Unlike the confluent case, this
result holds for shallow P systems. In particular, depth 1 (i.e., only one
membrane nesting level and using elementary membrane division only)
already suffices, and neither dissolution nor send-in communication rules
are needed.

1 Introduction

Families of confluent recogniser P systems with active membranes [9] are known
to characterise PSPACE in polynomial time [13,14]. In this kind of P systems the
computations can be locally nondeterministic, but the final result (acceptance or
rejection) must be consistent across all computations. This result seems to require
that the membrane nesting depth of each P system in the family depends on the
length of the input (the published results show that a linear depth suffices [13]);
furthermore, all known algorithms employ non-elementary membrane division (i.e.,
division of membranes containing further membranes, resulting in the replication
of whole subtrees of the membrane structure).

More recently, it has been proved [2] that when only elementary division (i.e.,
division for membranes not containing further membranes) is available, the power
of P systems decreases to P#P, the class of problems solved in polynomial time by
deterministic Turing machines with an oracle for a counting problem [8]; this class
is conjectured to be strictly smaller than PSPACE. More specifically, P systems
of depth 1 (consisting of an outermost membrane containing only elementary
membranes) already characterise P#P [3], and thus increasing the depth without
also allowing non-elementary division does not increase the computing power.
P systems of depth 0, where there exists only one membrane and division is
unavailable, are known to characterise P [15,3].

? This work was partially supported by Fondo d’Ateneo (FA) 2015 of Università degli
Studi di Milano-Bicocca: “Complessità computazionale e applicazioni crittografiche
di modelli di calcolo bioispirati”.
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Fewer results are known for non-confluent P systems, where the computations
need not agree on the result, and the overall behaviour is accepting if and
only if there exists an accepting computation (i.e., a strongly nondeterministic
behaviour analogous to Turing machines). Clearly, all lower bounds of confluent
P systems hold for non-confluent ones. The only other published result concerning
non-confluent recogniser P systems with active membranes, to the authors’ best
knowledge, is a characterisation of NP by means of polynomial-time non-confluent
P systems with active membranes without any kind of membrane division [11].

Membrane division in confluent P systems is commonly used to simulate the
effect of nondeterminism, by exploring in parallel all possible nondeterministic
choices and combining the results by disjunction [15], threshold or majority [3],
or alternation of conjunctions and disjunctions [13], depending on which rules
are available and the depth of the membrane structure. It is then natural to ask
whether these results can be somehow improved by employing actual nondeter-
minism, i.e., by exploiting non-confluence in addition to membrane division.

In this paper we prove that this is indeed the case, since the lower bound
PSPACE can actually be reached by “shallow” (small-depth) polynomial-time non-
confluent P systems: specifically, depth 1, and thus division only for elementary
membranes, already suffice for reaching PSPACE. Furthermore, the P systems
employed can be monodirectional [1,4], i.e., without using send-in communication
rules. Monodirectionality is known to decrease the power of confluent P systems;
for instance, polynomial-time monodirectional confluent P systems of depth 1
characterise PNP

‖ (the class of problems solved in polynomial time with parallel
queries to an NP oracle, conjectured to be smaller than P#P), and PNP (the
class where the oracle queries are not restricted to be parallel, which is probably
smaller than PSPACE) if the depth is unbounded [4].

2 Basic Notions

In this paper we use P systems with active membranes [9] using only object
evolution rules [a → w]αh , send-out communication rules [a]αh → [ ]βh b and
elementary membrane division rules [a]αh → [b]βh [c]γh.

The depth of a P system is defined as the depth of its membrane structure
when considered as a rooted tree, i.e., as the length of the longest path from the
outermost membrane to an elementary membrane.

In particular, we are dealing with recogniser P systems Π [10], whose alphabet
includes the distinguished result objects yes and no; exactly one result object
must be sent out from the outermost membrane to signal acceptance or rejection,
and only at the last computation step. If all possible computations of Π agree on
the result, the P system is said to be confluent. In this paper, however, we only
deal with the more general non-confluent recogniser P systems, where different
computations need not agree on the result, and the final result is acceptance if
and only if at least one computation is accepting.

A decision problem, or language L ⊆ Σ?, is solved by a family of P sys-
temsΠ = {Πx : x ∈ Σ?}, where Πx accepts if and only if x ∈ L. In that case, we
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say that L(Π) = L. As usual, we require a uniformity condition [6] on families
of P systems:

Definition 1. A family of P systems Π = {Πx : x ∈ Σ?} is (polynomial-
time) uniform if the mapping x 7→ Πx can be computed by two polynomial-time
deterministic Turing machines E and F as follows:

– F (1n) = Πn, where n is the length of the input x and Πn is a common
P system for all inputs of length n, with a distinguished input membrane.

– E(x) = wx, where wx is a multiset encoding the specific input x.
– Finally, Πx is simply Πn with wx added to its input membrane.

The family Π is said to be (polynomial-time) semi-uniform if there exists a
single deterministic polynomial-time Turing machine H such that H(x) = Πx

for each x ∈ Σ?.

The class of decision problems solved by uniform families of non-confluent
P systems with active membranes working in polynomial time is denoted by the
symbolNPMCAM. The corresponding class for families of P systems with depth-1
membrane structures using only object evolution, send-out communication and
elementary membrane division rules is denoted by NPMCAM(depth-1,−i,−d,−ne),
where −i, −d, and −ne denote the lack of send-in, dissolution, and non-elementary
division rules, respectively. For the complexity classes defined in terms of Turing
machines, such as NP, PNP

‖ , PNP, P#P, and PSPACE we refer the reader to
Papadimitriou’s book [8].

3 Simulating Nondeterministic Turing Machines

Let N be a nondeterministic Turing machine working in polynomial space p(n).
Let Σ be the tape alphabet of N , and let Q be its set of states. Without loss of
generality, we assume that N has a unique accepting configuration, consisting
of a unique accepting state, an entirely blank tape, and the tape head located
on the leftmost position. We can assume that all computations of N halt within
exponential time t(n) = |Σ|p(n) × |Q| × p(n).

Suppose that string x is an input for N , and let m = p(|x|) + 3. A config-
uration C of N can be encoded as a delimited string $a1 · · · ak−1qak · · · ap(n)$
of length m over the alphabet Σ ∪ Q ∪ {$}. This denotes that the tape of N
contains the string a1 · · · ak−1ak · · · ap(n), that the machine is in state q, and that
the tape head is located on the k-th tape cell.

Deciding whether N accepts an input x is equivalent to deciding whether the
unique final accepting configuration C′ is reachable from the initial configuration C
on input x within t(|x|) steps. Let C1 and C2 be configurations of N , let C1 → C2
denote that C2 is reachable from C1 via a single computation step, and let C1 →t C2
denote reachability within t steps. Then, we have

C1 →1 C2 iff C1 = C2 or C1 → C2
C1 →t C2 with t > 1 iff there exists C such that C1 →dt/2e C →bt/2c C2
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The Turing machine N on input x of length n is simulated by a P system Πx,
whose initial configuration is

a1,1 · · · am,m
b1,m+1 · · · bm,2m

ddlog t(n)e

0

h
yes2×dlog t(n)e+r(n)+2

0

k

(1)

Here the string a1 · · · am encodes the initial configuration of N on input x,
that is, a1 · · · am = $q0xtp(n)−n$ with t denoting a blank cell and q0 the
initial state of N ; these symbols need a further subscript in Πx in order to
keep track of their position within the string. Analogously, the string b1 · · · bm
encodes the unique accepting configuration of N , that is, b1 · · · bm = $qyestp(n)$,
where qyes is the accepting state. In this case, the symbols are subscripted
with m + 1, . . . , 2m as if the P system stored a single string a1 · · · amb1 · · · bm;
this will prove useful in a later phase of the simulation. The other objects do
not encode information about N , but play an auxiliary role in the simulation; in
particular, the function r(n), appearing in the subscript of the object yes, will be
defined later.

For the whole first phase of the computation of Πx (including the initial con-
figuration) the membranes with label h maintain, as an invariant, a configuration
of the form

x1,1 · · · xm,m
y1,m+1 · · · ym,2m

dt

α

h

(2)

where 1 ≤ t ≤ dlog t(n)e, the charge α is either 0 or +, and x1,1 · · ·xm,m
and y1,m+1 · · · ym,2m are multisets respectively encoding the strings x1 · · ·xm
and y1 · · · ym, which in turn encode two configurations C1 and C2 of N as de-
scribed above. This invariant is restored every two steps of the first phase of the
computation of Πx.

The purpose of this membrane, for t > 1, is to guess a computation path of
length at most 2t from C1 to C2; computation paths from C1 → · · · → C2 shorter
than 2t are padded to length 2t by repeating some intermediate configurations
(recall that C →1 C for all C). If t = 0, the membrane checks whether the
configuration C2 is reachable by N in one step from C1; if it is the case, then
it outputs an object yes, and otherwise an object no after exactly 2t+ r(n) + 1
computation steps.

Let us describe recursively the behaviour of the membrane. If t > 0, then the
problem of guessing a computation C1 →2t C2 is divided into the two subproblems
of guessing a computation C1 →2t−1 C and a computation C →2t−1 C2, where C is
a nondeterministically guessed mid-point. This mid-point is guessed by rewriting
each object σi of the multiset x1,1 · · ·xm,m into a primed version σ′i of itself,
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together with an object τ ′′i , where τ is a nondeterministically chosen symbol of
the alphabet of the configurations of N :

[σi → σ′i τ
′′
i ]
α
h for α ∈ {0,+}, σ, τ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m (3)

Notice that the P system guesses an arbitrary string as a configuration C; the
string might even be an invalid encoding (e.g., with multiple symbols denoting the
state of N); the validity of the configuration will be checked later. Simultaneously,
the objects of the target configuration y1,m+1 · · · ym,2m are primed:

[σi → σ′i]
α
h for α ∈ {0,+}, σ ∈ Σ ∪Q ∪ {$} and m+ 1 ≤ i ≤ 2m (4)

While the objects encoding the configurations of N are thus rewritten, the
membrane is divided by dt into two membranes differing only in their charge:

[dt]
α
h → [d′t]

+
h [d′t]

0
h for α ∈ {0,+} and 1 ≤ t ≤ dlog t(n)e

Hence, the original membrane h leads to the following configuration:

x′1,1 · · · x′m,m
z′′1,1 · · · z′′m,m

y′1,m+1 · · · y′m,2m
d′t

+

h

x′1,1 · · · x′m,m
z′′1,1 · · · z′′m,m

y′1,m+1 · · · y′m,2m
d′t

0

h

where the objects z′′i,i represent the mid-point configuration C guessed by the
membrane. Now configuration C becomes the target configuration in the left
membrane, having charge +. This requires eliminating all primes, deleting the
objects y′1,m+1 · · · y′m,2m and adjusting the subscripts of z′′1,1 · · · z′′m,m; this is
performed by the following rules:

[σ′i → σi]
+
h for σ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m

[σ′i → ε]+h for σ ∈ Σ ∪Q ∪ {$} and m+ 1 ≤ i ≤ 2m

[σ′′i → σi+m]+h for σ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m

On the other hand, the configuration C becomes the source configuration in the
right membrane (with charge 0), where the objects x′1,1 · · ·x′m,m must be deleted:

[σ′i → ε]0h for σ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m
[σ′i → σi]

0
h for σ ∈ Σ ∪Q ∪ {$} and m+ 1 ≤ i ≤ 2m

[σ′′i → σi]
0
h for σ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m

Finally, the object d′t is rewritten into dt−1 inside both membranes:

[d′t → dt−1]
α
h for α ∈ {0,+} and 1 ≤ t ≤ dlog t(n)e
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Hence, the P system reaches the configuration

x1,1 · · · xm,m
z1,m+1 · · · zm,2m

dt−1

+

h

z1,1 · · · zm,m
y1,m+1 · · · ym,2m

dt−1

0

h

with two membranes having a configuration of the form (2). This restores the
associated invariant.

After 2 × dlog t(n)e steps (twice the initial subscript of the object dt), all
membranes with label h simultaneously reach a configuration of the form

x1,1 · · · xm,m
y1,m+1 · · · ym,2m

d0

α

h

for some α ∈ {0,+} and x1, . . . , xm, y1, . . . , ym ∈ Σ ∪Q ∪ {$}. The last phase of
the simulation is triggered by objects d0 being sent out and changing the charge
of the membranes to −:

[d0]
α
h → [ ]−h # for α ∈ {0,+} (5)

While rule (5) is applied, the charge of the membrane is still 0 or +, and the
rules of type (3) and (4) are still enabled; thus, each membrane h reaches a
configuration of the form

x′1,1 · · · x′m,m
z′′1,1 · · · z′′m,m

y′1,m+1 · · · y′m,2m

−

h

When the charge of a membrane with label h is −, the objects of the form τ ′′i
(which have been just produced, but are actually not needed in this phase) are
deleted:

[τ ′′i → ε]−h for τ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ m

The remaining objects σ′i are rewritten into a “tilded” version. This allows us
to re-use the charges 0 and + in the next phase of the computation (which will
make use of a simulation from [3]) without creating conflicts with previous rules.

[σ′i → σ̃i]
−
h for σ ∈ Σ ∪Q ∪ {$} and 1 ≤ i ≤ 2m

This leads to the configuration

x̃1,1 · · · x̃m,m
ỹ1,m+1 · · · ỹm,2m

−

h

(6)
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Each membrane h now contains what can be considered as a string of length 2m,
consisting of the concatenation of two (possibly malformed) encodings of configu-
rations of N .

From [3] we know that a single membrane is able to efficiently simulate a
polynomial-time deterministic Turing machine (as long as there is no communica-
tion with adjacent membranes) if the tape is encoded as in configuration (6). The
idea is to simulate a larger number of charges (referred to as extended charges) by
encoding them in the subscripts of each object; the subscripts are kept synchro-
nised by multiple sequential updates of the actual charges {+, 0,−}. The extended
charges are employed in order to store pairs (q, i) of state and tape head position
of the simulated Turing machine. A transition such as δ(q, a) = (q′, a′,+1) is then
implemented as a rule of the form [ai]

(q,i)
h → [a′i]

(q′,i+1)
h , which is actually carried

out in multiple steps using standard charges, object evolution and send-out
communication rules.

In our particular case, each membrane h can simulate a Turing machine that
checks whether the content of such membrane consists of two valid consecutive
configurations of N , or two identical valid configurations of N . We can assume,
without loss of generality, that such Turing machine halts exactly in polynomial
time r(n) for all strings of length n; the result is given by outputting yes or no
from the membrane.

After 2× dlog t(n)e+ r(n) steps, a total of 2dlog t(n)e instances of yes and no
reach the outermost membrane k. If there is at least one instance of no, then there
existed an instance of membrane h containing either an invalid configuration, or
two non-consecutive configurations; this means that the P system Πx guessed a
malformed computation of N . In that case, it sends out any of the objects no as
the final result of the computation:

[no]0k → [ ]−k no

If there is no instance of no inside k, then all membranes h contained valid
consecutive configurations (or pairs of identical valid configurations). Since the
initial membrane h contained the initial and final configurations of N on input x,
this means that Πx guessed a legitimate accepting computation of N . In that
case, all objects yes sent out from the elementary membranes h are ignored, and
instead the timed object yest, which already appears in the initial configuration (1),
produces the output of the P system. This object counts down for the entire
duration of the simulation:

[yest → yest−1]
0
k for 1 ≤ t ≤ 2× dlog t(n)e+ r(n) + 2

If at time 2 × dlog t(n)e + r(n) + 2 membrane k still has charge 0, then the
P system has not rejected, and it can send out yes0 as yes, as the result:

[yes0]
0
k → [ ]−k yes

In both cases Πx halts by sending out a result at the last computation step.
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The P system Πx has thus an accepting computation if and only if there
exists a computation path from the initial configuration of N on input x to its
accepting computation, that is, if and only if N accepts.

Notice that the mapping x 7→ Πx is uniform, since all rules of Πx only
depend on the length of the input, and not on the input itself. Furthermore, the
initial membrane structure is the same for all Πx. The only portion of the initial
configuration that depends on the actual input x is the content of membrane h,
which is chosen as the input of the P system. The mapping x 7→ Πx can also be
computed in polynomial time: the encoding of the input simply consists in adding
subscripts to the input symbols of x, and the rules are easy to compute, since
they all range over sets independent of the input, or over sets of natural numbers
depending on the input length, and never require sophisticated computation.

Theorem 1. Let N be a nondeterministic Turing machine working in polynomial
space. Then, there exists a uniform family Π of non-confluent P systems of
depth 1, using only object evolution, send-out and elementary division rules, and
working in polynomial time such that L(N) = L(Π).

Since arbitrary polynomial-space Turing machines can be simulated, the whole
class they characterise is solved by shallow non-confluent P systems with a limited
range of rules:

Corollary 1. PSPACE ⊆ NPMCAM(depth-1,−i,−d,−ne).

4 Conclusions

The results obtained in this paper show that, even with depth-1 membrane
structures and monodirectional communication, non-confluent P systems with
active membranes are already able to solve PSPACE-complete problems in
polynomial time, and are thus conjecturally stronger than confluent ones with
the same restrictions (and even those with only one of such restrictions).

This result is a first step towards a characterisation of the power of polynomial-
time non-confluent P systems with active membranes. If PSPACE turned out
to also be an upper bound, although it has been conjectured that it might not
be so [14], this would show that non-confluence subsumes both nesting depth
beyond 1 and bidirectionality. In that case, it would be interesting to find other
parameters (such as unusual combinations of admissible rules) which can be
“tuned” in order to obtain complexity classes between NP and PSPACE.

We also conjecture that an algorithm similar to the one provided here for
P systems with active membranes can also be implemented for tissue-like P sys-
tems using either cell division [12] or cell separation rules [7], since they seem to
share several features and limitations of cell-like P systems of depth 1 [5].
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Abstract. We refine our earlier version of P systems with complex sym-
bols. The new version, called cP systems, enables the creation and ma-
nipulation of high-level data structures which are typical in high-level
languages, such as: relations (graphs), associative arrays, lists, trees. We
assess these capabilities by attempting a revised version of our previ-
ously best solution for the Byzantine agreement problem – a famous
problem in distributed algorithms, with non-trivial data structures and
algorithms. In contrast to our previous solutions, which use a greater
than exponential number of symbols and rules, the new solution uses a
fixed sized alphabet and ruleset, independent of the problem size. The
new ruleset follows closely the conceptual description of the algorithm.
This revised framework opens the way to further extensions, which may
bring P systems closer to the conceptual Actor model.

Keywords: Distributed algorithms, Byzantine agreement, EIG trees,
membrane computing, P systems, cP systems, inter-cell parallelism, intra-
cell parallelism, Prolog terms and unification, complex symbols, cells
with subcells, generic rules, synchronous and asynchronous models, Ac-
tor model.

1 Introduction

We refine our earlier version of P systems with complex symbols. The new ver-
sion, called cP systems, enables the creation and manipulation of high-level data
structures which are typical in high-level languages, such as: relations (graphs),
associative arrays, lists, trees.

We assess these capabilities by attempting a revised version of our previ-
ously best solution for the Byzantine agreement problem, a famous problem in
distributed algorithms, with non-trivial data structures and algorithms. In con-
trast to our previous solution, which uses a greater than exponential number
of symbols and rules, the new solution uses a fixed sized alphabet and ruleset,
independent of the problem size. The new ruleset follows closely the conceptual
description of the algorithm.

Section 2 introduces high-level data structures in cP systems. Sections 3, 4,
and 5 discuss the Byzantine algorithm and its classical implementation based on
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EIG trees; this material is reproduced or adapted from our earlier papers [7, 8].
The remaining sections discuss our newly revised solution.

2 Data structures in cP systems

We assume that the reader is familiar with the membrane extensions collectively
known as complex symbols, proposed by Nicolescu et al. [20, 19, 21, 17]. However,
to ensure some degree of self-containment, our revised extensions, called cP sys-
tems, are reviewed in Appendix A. The reader is encouraged to check the main
changes from our earlier versions, including: a simplified definition for complex
symbols (subcells) and a standard set of complexity measures.

In this section we sketch the design of high-level data structures, similar to
the data structures used in high-level pseudocode or high-level languages: num-
bers, relations, functions, associative arrays, lists, trees, together with alternative
more readable notations. These data structures are critical in our model of the
Byzantine algorithm.

Natural numbers. Natural numbers can be represented via multisets contain-
ing repeated occurrences of the same atom. For example, considering that 1
represents an ad-hoc unary digit, the following complex symbols can be used to
describe the contents of a virtual integer variable a: a() = a(λ) — the value of a
is 0; a(13) — the value of a is 3. For concise expressions, we may alias these num-
ber representations by their corresponding numbers, e.g. a() ≡ a(0), b(13) ≡ b(3).
Nicolescu et al. [20, 19, 21] show how the basic arithmetic operations can be ef-
ficiently modelled by P systems with complex symbols.

Relations and functions. Consider the binary relation r, defined by: r =
{(a, b), (b, c), (a, d), (d, c)} (which has a diamond-shaped graph). Using com-
plex symbols, relation r can be represented as a multiset with four r items,
{r(κ(a) υ(b)), r(κ(b) υ(c)), r(κ(a) υ(d)), r(κ(d) υ(c))}, where ad-hoc atoms κ
and υ introduce domain and codomain values (respectively). Hiding the less rel-
evant representation choices, we may alias the items of this multiset by a more

expressive notation such as: {(a
r

� b), (b
r

� c), (a
r

� d), (d
r

� c)}.
If the relation is a functional relation, then we can emphasise this by using

another operator, such as “mapsto”. For example, the functional relation f =
{(a, b), (b, c), (d, c)} can be represented by multiset {f(κ(a) υ(b)), f(κ(b) υ(c)),

f(κ(d) υ(c))} or by the more suggestive notation: {(a f7→ b), (b
f7→ c), (d

f7→ c)}.
To highlight the actual mapping value, instead of a

f7→ b, we may also use the
succinct abbreviation f [a] = b.

In this context, the � and 7→ operators are considered to have a high asso-
ciative priority, so the enclosing parentheses are mostly required for increasing
the readability (e.g. in text).

Associative arrays. Consider the associative array x, with the following key-
value mappings (i.e. functional relation): {1 7→ a; 13 7→ c; 17 7→ g}. Using
complex symbols, array x can be represented as a multiset with three items,
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{x(κ(1) υ(a)), x(κ(13) υ(c)), x(κ(17) υ(g))}, where ad-hoc atoms κ and υ in-
troduce keys and values (respectively). Hiding the less relevant representation
choices, we may alias the items of this multiset by the more expressive notation
{1 x7→ a, 13

x7→ c, 17
x7→ g}.

Lists. Consider the list y, containing the following sequence of values: [u; v;w].
Using complex symbols, list y can be represented as y( γ(u γ(v γ(w γ())))),
where the ad-hoc atom γ represents the list constructor cons and γ() the empty
list. Hiding the less relevant representation choices, we may alias this list by
the more expressive equivalent notation y(u | v |w) – or by y(u | y′), y′(v |w) –
where operator | separates the head and the tail of the list. The notation z(|) is
shorthand for z(γ()) and indicates an empty list, z.

Trees. Consider the binary tree z, described by the structured expression
(a, (b), (c, (d), (e))), i.e. z points to a root node which has: (i) the value a; (ii) a
left node with value b; and (iii) a right node with value c, left leaf d, and right leaf
e. Using complex symbols, tree z can be represented as z(a φ(b) ψ(c φ(d) ψ(e))),
where ad-hoc atoms φ, ψ introduce left subtrees, right subtrees (respectively).

3 Byzantine agreement

The Byzantine agreement problem was first proposed by Pease et al. in 1980 [22]
and further elaborated in Lamport et al.’s seminal paper [12]. This problem ad-
dresses a fundamental issue in complex systems: correctly functioning processes
must be able to overcome their possible differences and achieve a consensus, de-
spite arbitrarily faulty processes that can give conflicting information to different
parts of the system.

The Byzantine agreement has become one of the most studied problems in
distributed algorithms—some even consider it the “crown jewel” of distributed
algorithms. Lynch covers several versions of this problem and their solutions,
including a complete description of the classical algorithm, based on Exponential
Information Gathering (EIG) trees as a data structure [13].

Recent years have seen revived interest in this problem and its solutions, to
achieve higher performance or stronger resilience, in a wide variety of contexts [4,
1, 3, 14], including, for example, solutions for quantum computers [2].

To the best of our knowledge, except our previous work on Byzantine agree-
ment problem [9–11, 7, 8], no other complete solutions for P systems has been
published. In the context of P systems, this problem was briefly mentioned, with-
out solutions [6, 5]. Our solution was based on the classical EIG-based algorithm,
where each EIG node was implemented by a distinct cell.

In this paper, we provide a newly revised P solution for the Byzantine agree-
ment problem, based on EIG trees, for N processes connected in a complete
graph. Each process is modelled by the combination of N + 1 cells: one “main”
cell, which evaluates the EIG tree, plus one “firewall” cell for each duplex link
(including one for itself). The new main cell uses a fixed number of states and
high-level rules: 9 states and 16 rules for the main cell, and 5 states and 7 rules
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for the firewall cell; these high-level rules closely map the EIG algorithm de-
scription. In contrast, our previous best solution [8] used O(L) states and O(N !)
symbols and rules (i.e. factorial complexity), where L is the number of messaging
rounds (where L = d(N − 1)/3e).

4 EIG trees

We assume that the reader is familiar with the basic terminology and notations:
functions, relations, graphs, nodes (vertices), arcs, directed graphs, dags, trees,
alphabets, strings and multisets [18]. Given two sets, A, B, a subset f of their
cartesian product, f ⊆ A × B, is a functional relation if ∀(x, y1), (x, y2) ∈ f ⇒
y1 = y2. Obviously, any function f : A→ B can be viewed a functional relation,
{(x, f(x)) | x ∈ A}, and, vice-versa, any functional relation can be viewed as a
function.

We now recall a few basic concepts from combinatorial enumerations. The
integer range from m to n is denoted by [m,n], i.e. [m,n] = {m,m+ 1, . . . , n},
if m ≤ n, and [m,n] = ∅, if m > n. The set of permutations of n of length m is
denoted by P (n,m), i.e. P (n,m) = {π : [1,m] → [1, n] | π is injective}. A per-
mutation π is represented by the sequence of its values, i.e. π = (π1, π2, . . . , πm),
and we will often abbreviate this further as the sequence π = π1.π2 . . . πm. The
sole element of P (n, 0) is denoted by (), or by λ, if the context removes any
possible ambiguity. Given a subrange [p, q] of [1,m], we define a subpermutation
π(p : q) ∈ P (n, q−p+1) by π(p : q) = (πp, πp+1, . . . , πq). The image of a permu-
tation π, denoted by Im(π), is the set of its values, i.e. Im(π) = {π1, π2, . . . , πm}.
The concatenation of two permutations is denoted by �, i.e. given π ∈ P (n,m)
and τ ∈ P (n, k), such that Im(π) ∩ Im(τ) = ∅, π � τ = (π1, π2, . . . , πm, τ1,
τ2, . . . , τk) ∈ P (n,m+ k).

An Exponential Information Gathering (EIG) tree TN,L, N ≥ L ≥ 0, is a
labelled rooted tree of height L that is defined recursively as follows. The tree
TN,0 is a rooted tree with just one node, its root, labelled λ. For L ≥ 1, TN,L is
a rooted tree with 1 +N |TN−1,L−1| nodes (where |T | is the size of tree T ), root
λ, having N subtrees, where each subtree is isomorphic with TN−1,L−1 and each
node, except the root, is labelled by an element of [1, N ] that is different from
any ancestor node (and also different from any left sibling node, if we want to
display it like an ordered tree). Note that, TN,L−1 is isomorphic and identically
labelled with the tree obtained from TN,L by deleting all its leaves.

It is straightforward to see that there is a bijective correspondence between
the permutations of P (N,L) and the sequences (concatenations) of labels on all
paths from root to the leaves of TN,L. Thus, each node σ in an EIG tree TN,L
is uniquely identified by a permutation πσ ∈ P (N, l), where l ∈ [0, L] is also
σ’s depth, and, vice-versa, each such permutation π has a corresponding node
σπ. We will further use this node-permutation identification, while referring to
nodes.

Given EIG tree TN,L, an attribute is a function ℵ : TN,L → V , for some value
set V ; alternatively, ℵ can be given as a functional subset of {π ∈ P (N, t) | t ∈
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[0, L]}×V . The classical EIG-based Byzantine algorithm uses two attributes: (i)
a top-down attribute val, here called α; and (ii) a bottom-up attribute newval,
here called β.

Figure 1 illustrates three isomorphic EIG trees, (a) T 2
4,2, (b) T 3

4,2, (c) T 4
4,2.

As we will see next, theses are the EIG trees built by non-faulty processes 2, 3,
4 (respectively) in our sample scenario 5.1, where process 1 is Byzantine-faulty
(so its own internal structure is irrelevant).

Consider EIG tree 1.b, for process 3, T 3
4,2. Level 0 corresponds to permutation

set {λ}. Level 1 corresponds to permutation set {(1), (2), (3), (4)}. Level 2
corresponds to permutation set {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1),
(3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}. This tree is decorated with two attributes,
α and β. Using the alternate notation for permutations (to avoid embedded
parentheses), attribute α corresponds to the functional relation {(λ, 1), (1, 0),
(2, 0), (3, 1), (4, 1), (1.2, 0), (1.3, 0), (1.4, 1), (2.1, 0), (2.3, 0), (2.4, 0), (3.1, 0),
(3.2, 1), (3.4, 1), (4.1, 1), (4.2, 1), (4.3, 1)}.

5 The EIG-based Byzantine agreement algorithm

Each process starts with its own initial decision choice. At the end, all non-faulty
processes must take the same final decision, even if the faulty processes attempt
to disrupt the agreement, accidentally or intentionally.

The classical EIG-based algorithm solves the Byzantine agreement problem
in the binary decision case (true = 1, false = 0), for N processes, connected in
a complete graph (where edges indicate reliable duplex communication lines),
provided that N ≥ 3F +1, where F is the maximum number of faulty processes.
This is a synchronous algorithm; celebrated results (see for example [13]) show
that the Byzantine agreement is not possible if N ≤ 3F , in the asynchronous
case or when the communication links are not reliable.

Without providing a complete description, we provide a sketch of the classical
algorithm, reformulated on the basis of the theoretical framework introduced
in Section 4. For a more complete and verbose description of this algorithm,
including correctness and complexity proofs, we refer the reader to Lynch [13].

Each non-faulty process, h, has its own copy of an EIG tree, ThN,L, where

L = F + 1. This tree is decorated with two attributes, αh, βh : {π ∈ P (N, t) |
t ∈ [0, L]} → {0, 1, null}, where null designates undefined items (not yet evalu-
ated). Attributes αh and βh are also known as valh and newvalh [13], or top-down
and bottom-up [9]. As their alternative names suggest, αh is first evaluated, in
a top-down tree traversal, in increasing level order; next, βh is evaluated, in a
bottom-up traversal, in decreasing level order.

The algorithm works in two phases. Its first phase is a messaging phase which
completes the evaluation of the top-down attribute αh. Initially, αh(λ) = vh, the
initial choice of process h; all the other αh and βh values are still undefined. Next,
there are L messaging rounds. At round t ∈ [1, L], h broadcasts to all processes
(including self), a reversibly encoded message which identifies its αh values at
level t − 1 and their EIG destinations. Here, we encode all these via the set
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Fig. 1: Three sample EIG trees, Th4,2, h ∈ {2, 3, 4}, completed with two attributes,
α and β. The node labels appear besides the node blob. Each node blob contains
its two attribute values: the top-down α value at the top, and the bottom-up β
value at the bottom.

{(π � h, αh(π)) | π ∈ P (N, t − 1), h /∈ Im(π)}. All other non-faulty processes
broadcast messages, in a similar way. More compact encodings are possible, but
we don’t follow this issue here.

Process h decodes and processes the messages that it receives. From process
f , f ∈ [1, N ], process h receives the set {(π� f, αf (π)) | π ∈ P (N, t− 1)}. Each
item (π � f, αf (π)) is used to assign further αh values, to the next level down
the EIG tree, by setting αh(π � f) = αf (π).

As this formula suggests, it is indeed critical that h “knows” the origin f
of each received message and that this origin mark cannot be faked by faulty
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processes. Wrong or missing values are replaced by the value of a predefined
default parameter, v0 ∈ {0, 1}. Thus, there are L messaging rounds and, after
the last round, all nodes are decorated with values of attribute α. In fact, only
the last level α values are actually needed, to start the next phase, a practical
implementation can choose to discard the other α values.

Then, the algorithm switches to its second phase, the evaluation of the
bottom-up attribute βh. First, for leaves, βh(π) = αh(π), π ∈ P (N,L).

Next, given βh values for level t ∈ [1, L], each βh value for the next level
up, βh(π), π ∈ P (N, t − 1), is evaluated on the basis of the βh values of node
π’s children, i.e. on the multiset {βh(π � f) | f ∈ [1, N ] \ Im(π)}, using a local
majority voting scheme: βh(π) = 0, if a strict majority of the above multiset
values are 0; or, βh(π) = 1, if a strict majority of the above multiset values are
1; or, βh(π) = v0 (the same default parameter mentioned above), if there is a
tie.

At the end, the βh value for the EIG root, βh(λ), is process h’s final decision.
All non-faulty processes will simultaneously reach the same final decision; any
decision taken by faulty nodes is not relevant.

Example 5.1 (Sample Byzantine scenario). Consider a Byzantine scenario with
N = 4 and F = 1, thus L = 2. Assume that processes 1, 2, 3 and 4 start with
initial choices 0, 0, 1, and 1, respectively. Further, assume that process 1 is faulty.
Figure 2 shows sample messages which could be exchanged in this scenario and
Figure 1 shows the corresponding EIG trees, for non-faulty processes 2,3,4.

Each of the non-faulty processes, 1, 2 and 3, broadcasts identical messages
to each of the four processes. The faulty process 1 sends conflicting messages. In
our scenario, x = 0, in the message sent to 1, 2 and 3, but x = 1, in the message
sent to 4. Also, y = 1, in the message sent to 1, 2 and 4, but y = 0, in the
message sent to 3. White spaces are placeholders indicating potential messages
which are not created, because they would have contained duplicated process
numbers (1.1, 2.2, 3.3, 4.4). The second phase is not detailed here, except the
common final decisions (the question mark indicates an irrelevant value).

The second phase is illustrated in Figure 1, for all non-faulty processes 2, 3, 4.
All three EIG tress are shown completed all attribute values. Consider the EIG
tree (b) owned by process 3, T 3

4,2. The α3 values are filled from messages received
in the two messaging rounds, as indicated in Figure 2.

The β3 values are evaluated as required by the algorithm, by a local majority
voting scheme. The evaluation of β3(λ) reaches a tie, on multiset {0, 0, 1, 1},
which has two 0’s and two 1’s; this tie is broken using the default value, here
we assume v0 = 0. Thus, β3(λ) = 0 is the final decision of process 3, which is
different from its initial choice, α3(λ) = 1.

A similar argument shows that all other non-faulty processes, 2 and 4, end
with the same final decision, 0, thereby achieving the required agreement, despite
starting with different initial choices and the conflicting messages sent by faulty
process 1. Briefly, the Byzantine-faulty process may sometimes affect the out-
come (between 0 and 1), but cannot affect the consensus: all non-faulty processes
will take the same final decision.
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(2.3, 0) (2.4, 0)

(4.1, 1) (4.2, 1)

Fig. 2: A sample Byzantine scenario, N = 4, F = 1, where process 1 is Byzantine
faulty. Process 1 sends out syntactically correct but different messages to the non-
faulty processes: x = 0, y = 1 to process 2; x = 0, y = 0 to process 3; x = 1, y = 1
to process 4. As shown in Figure 1, non-faulty processes 2, 3, 4 build different
EIG trees, but they still reach the same final decision.

6 Revised Byzantine agreement solution

Each non-faulty node (process) is modelled by a subsystem which combines
N + 1 cells: one “main” cell, plus one “firewall” cell for each process (including
one for itself). The EIG tree evaluation functionality is localized into the main
cell. The main cells communicate only via their associated firewall cells. Figure 3
illustrates the communication digraph for the particular case N = 4. The whole
subsystem corresponding to a faulty process (1 in our example), may be replaced
by any arbitrary entity.

The system evolves along 9 states, for the main cells, and 5 states, for the
firewall cells. Figure 4 gives a bird’s eye view of this process, for the particular
case N = 4. Both kind of cells start in state S0. In state S0, main cells, µi, build
the root of their EIG trees.

The first (messaging) phase is covered by L repetitions of the state cycle
S1, S2, S3, S4. In state S1, main cells, µi, broadcast their outgoing θ′ messages
to their local firewalls, νij . In state S2, local firewalls, νij , forward isomorphic
messages θ′′ to their partners firewalls, νji. In state S3, local firewalls, νij , forward
isomorphic messages θ′ to their main cells, µi. In state S4, main cells, µi, use
incoming θ′ messages to build the next level of their EIG trees. The messaging
phase ends after L messaging rounds, when all cells, µi and νij , enter state S5.
State S5 is the end state for the firewall cells, νij .

In state S5, all main cells, µi, have computed all top-down attributes, α,
and start the second phase, i.e. the bottom-up evaluation of attributes β. This
second phase ends after L repetitions of the state cycle S6, S7, S8, when all main
cells, µi, enter state S9. Each bottom-up cycle computes a new level of the β
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Fig. 3: A sample Byzantine problem, N = 4, modelled as a cP system digraph
with N subsystems, N main cells (µi) and N2 firewall cells (νij), i, j ∈ [1, N ].
The dashed blob delimits the subsystem of a possibly faulty process (here 1).

attributes. At the end, the final decision value is given by the β attribute of the
EIG root.

7 Initial configurations

Figure 5 lists the initial multiset for the main cell µi, i.e. for process i ∈
{1, 2, . . . , n}. Process IDs are encapsulated in ι (iota) sub-subcells. Subcell µ̄
contains the ID of the current process, i, i.e. ι(1i). Subcell π̄ contains the set of
all process IDs, i.e. {1, 2, . . . , n}, given as the multiset {ι(11), ι(12), ... ι(1n)}.
Subcell ¯̀ represents l, the maximum number of levels for the EIG tree; this is
computed as l = d(n − 1)/3e. Subcells δ̄ contain the two admissible decision
values, here t (true=1) and f (false=0). Subcell ᾱ contains vi ∈ {t, f}, process
i’s initial choice. Subcell ῡ0 contains v0 ∈ {t, f}, i.e. the default value, known by
all processes. All these initial symbols will be immutable.

Figure 6 lists the initial multiset for the firewall cell νij (serving µi) to its
partner firewall cell νji (serving µj), for i, j ∈ {1, 2, . . . , n}. Subcell µ̄ contains
the ID of the current process, here ι(1i). Subcell ν̄ contains the ID of the other
linked process, here ι(1j). As in main cell µi, subcell ¯̀ represents l, the maximum
number of levels for the EIG tree. All these initial symbols will be immutable.
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Fig. 4: State and interaction chart. Here: (i) µi, µj are the main cells of two non-
faulty processes, i, j; (ii) νij , νji are firewall cells at the end of the communication
link between i and j.
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{ π̄(ι(11) ι(12) . . . ι(1n)), µ̄(ι(1i)), ¯̀(1l), δ̄(t), δ̄(f), ᾱ(vi), ῡ0(v0) }

Fig. 5: Initial multiset for the main cell µi, i.e. for process i ∈ {1, 2, . . . , n}.

{ µ̄(ι(1i)), ν̄(ι(1j)), ¯̀(1l) }

Fig. 6: Initial multiset for the firewall cell νij (serving µi) to its partner firewall
cell νji (serving µj), for i, j ∈ {1, 2, . . . , n}.

8 Rules for messaging phase

Sending messages. Figure 7 lists the ruleset which completes the initialisation
of main cell µi and then sends out expected round messages, exiting to state S5

at the end of the messaging phase. Subcell ` gives the current level in the EIG
tree. Subcell θ represents a node in the EIG tree during the top-down messaging
phase. Sub-subcells θ/`, θ/α, θ/π, and θ/ρ respectively indicate the node level,
its top-down α value, its associated permutation (i.e. EIG branch), and the set of
all process numbers appearing in π (i.e. Im(π)). Subcell θ′ represents an outgoing
message and has sub-subcells isomorphic to θ (except that it does not have a ρ
sub-subcell).

Technically, subcell θ/π is a list of process IDs and subcell θ/ρ is the corre-
sponding set of process IDs; both are initially empty. For example, the EIG
branch 3.1 with top-down attribute α = 0 is represented by subcell θ(`(2)
π(ι(1) | ι(3)) ρ(ι(1) ι(3)) α(0)). Conceptually, the information hold by subcells
θ/` and θ/ρ is redundant, as it can be computed from π; however, their presence
simplifies and speeds up the overall evolution.

Rule (0) constructs a zero current level and the root of the EIG tree. Rule
(1) exists to state S5 when all required messaging rounds (tree levels) have
been completed. Rule (2) sends out messages θ′, based on values from node θ.
The outgoing messages already indicate their destination: the included level is
already increased by one and the current process id is prepended to the branch
permutation. Rule (3) increments the current level.

Firewall. Figure 8 lists the ruleset of the firewall cell νij . During the messag-
ing phase, its states are exactly synchronised to the states of its main cell, µi.
Messages θ′ are received or assumed to be received from its main cell, µi, and
are forwarded as θ′′ to its partner firewall cell, νji (associated to main cell µj).
Messages θ′′ are assumed to be received from the partner firewall cell, νji; θ

′′ are
forwarded to the main cel, µi, as θ′ – but only if the permutation head prop-
erly identifies the other process (so the sender’s identity cannot be faked). No
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S0 →min⊗min S1 `(0) θ(`(0) π(|) ρ() α(V )) (0)
‖ ᾱ(V )

S1 →min⊗min S5 (1)
‖ ¯̀(L)
‖ `(L)

S1 →max⊗min S2 θ
′(`(L1) π(X|P ) α(V )) ↓∀ (2)

‖ µ̄(X)
‖ `(L)
‖ θ(`(L) π(P ) α(V ) ρ( ))

S1 `(L) →min⊗min S4 `(L1) (3)

Fig. 7: Ruleset which completes the initialisation of the main cells and then
(repeatedly) sends out expected round messages, exiting to state S5 at the end
of the messaging phase.

other messages can reach the main cell (this explains why these cells are called
“firewall”).

Subcell ` gives the current “reverse” level in the EIG tree – which is decre-
mented from maximum to zero (instead of being incremented the other way).
Rule (0) constructs this “reverse‘ current level. At the end of the messaging
phase, rule(1) exits to end state S5. Rule (2) decrements the current level. Rule
(3) transforms incoming message θ′ into an isomorphic θ′′ and forwards it to its
partner firewall, νji. Rule (4) transforms incoming message θ′′ into an isomor-
phic θ′ and forwards it to its main cell, µi, provided that the sender is properly
recorded as the permutation head. Rules (5) and (6) keep the synchronisation
with main cell, µi.

S0 →min⊗min S1 `(L) ‖ ¯̀(L) (0)
S1 `() →min⊗min S5 (1)
S1 `(L1) →min⊗min S2 `(L) (2)
S2 θ

′(T ) →max⊗min S3 θ
′′(T ) ↓∀ (3)

S3 θ
′′(π(Y |P ) T ′) →max⊗min S4 θ

′(π(Y |P ) T ′) ↑∀ ‖ ν(Y ) (4)
S3 →min⊗min S4 (5)
S4 →min⊗min S1 (6)

Fig. 8: Ruleset of the firewall cell.
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Receiving messages. Figure 9 lists the ruleset which receives incoming mes-
sages and records these in a new level down in the EIG tree. Note that, after
passing the firewall, all these incoming messages have a correct sender. Rule (1)
records the α attributes of the incoming message θ′, whose level and branch
permutation match existing nodes. For missing or unmatched (malformed) mes-
sages, rule (2) assumes the default value v0. Rules (3) and (4) delete all previous
level θ nodes and incoming θ′ messages (not strictly necessary, but keeps the
cells clean).

For example, with reference to Figures 2 and 1, consider that process 3 re-
ceives from process 1 the second level message θ′(`(2) π(ι(1) | ι(3)) α(0)). At this
stage, process 2 already is in state S4 and has the following subcells: π̄(ι(1) . . . ),
`(2), δ̄(0), δ̄(1), `(2), θ(`(1) π(ι(3) |) ρ(ι(3)) α(1)). Then, rule (4) selects the
target state S1 and creates new subcell θ(`(2) π(ι(1) | ι(3)) ρ(ι(1) ι(3)) α(0)) –
for EIG branch 3.1 and top-down value 0.

S4 →max⊗min S1 θ(`(L1) π(Y |P ) ρ(Y Q) α(V )) (1)
‖ π̄(Y )
‖ δ̄(V )
‖ `(L1)
‖ θ(`(L) π(P ) ρ(Q) α( ))
¬ θ(`(L) π(P ) ρ(Y Q′) α( ))
‖ θ′(`(L1) π(Y |P ) α(V ))

S4 →max⊗min S1 θ(`(L1) π(Y |P ) ρ(Y Q) α(V )) (2)
‖ π̄(Y )
‖ ῡ0(V )
‖ `(L1)
‖ θ(`(L) π(P ) ρ(Q) α( ))
¬ θ(`(L) π(P ) ρ(Y Q′) α( ))
¬ θ′(`(L1) π(Y |P ) α( ))

S4 θ(r(L) ) →max⊗min S1 (3)
‖ `(L1)

S4 θ
′( ) →max⊗min S1 (4)

Fig. 9: Ruleset to receive a set of messages and record these in a new level down
in the EIG tree.
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9 Rules for second phase

Figure 10 lists the ruleset which iteratively evaluates the bottom-up β attributes
for main cell µi. Subcell τ represents a node in the EIG tree during the bottom-
up evaluation phase (we could have reused the already existing θ’s, but it seems
cleaner this way). Sub-subcells τ/` and τ/π have the same meaning as for θ’s.
Sub-subcell τ/β contains the value of the bottom-up β attribute. Subcell ω stores
the final decision (in agreement with all non-faulty processes).

Rule (1) determines β for the leaves of the EIG tree. Rule (2) fires after
the β evaluation has reached the EIG root and records the final decision. Rule
(3) decrements the EIG level. Rule (4) cancels all pairs of opposite τ/β’s, i.e.
containing t vs. f . If any t remains, rule (5) decides for t. If any f remains, rule
(6) decides for f . Otherwise, rule (7) decides for the default value v0. Finally,
rule (7) deletes all previously existing τ ’s (again, not necessary, but keeps cells
clean).

S5 θ(`(L) π(P ) ρ( ) α(V )) →max⊗min S6 τ(`(L) π(P ) β(V )) (1)
‖ `(L)

S6 `() →min⊗min S9 ω(V ) (2)
‖ τ(r() π() β(V ))

S6 `(L1) →min⊗min S7 `(L) (3)

S7 τ(`(L1) π(Y |P ) β(t))
τ(`(L1) π(Y |P ) β(f)) →max⊗max S8 (4)

‖ `(L)

S7 τ(`(L1) π(Y |P ) β(t)) →min⊗min S8 τ(`(L) π(P ) β(t)) (5)
‖ `(L)

S7 τ(`(L1) π(Y |P ) β(f)) →min⊗min S8 τ(`(L) π(P ) β(f)) (6)
‖ `(L)

S7 →max⊗min S8 τ(`(L) π(P ) β(V )) (7)
‖ ῡ0(V )
‖ `(L)
¬ τ(`(L) π(P ) β( ))

S8 τ( ) →max⊗min S6 (8)

Fig. 10: Ruleset which evaluates the bottom-up attribute β.
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10 Static complexity

Table 11 summarizes the main differences between the previous best solution [7,
8] and the current solution. In contrast to the previous solution, this new solution,
based on complex symbols and generic rules, uses a small and fixed size set of
objects, states and rules. The high-level rules map naturally to the main steps
of the algorithm described in Sections 4 and 5. In fact, this high-level ruleset
compares favourably even with the semi-formal description of these sections,
because: (i) it is fully formal; (ii) it is directly executable; and (iii) it seems
succinter.

Complexity measure Previous version Current version

Cells per process 3N + 1 N + 1

Atomic symbols O(N !) 16

States O(L) 9 + 5

Rules O(N !) 16 + 7

Fig. 11: Summary of complexity measures (where L = d(N − 1)/3e).

11 Conclusions and open problems

We have refined our earlier version of P systems with complex symbols. The
new version, called cP systems, enables the creation and manipulation of high-
level data structures which are typical in high-level languages, such as: relations
(graphs), associative arrays, lists. We leveraged these capabilities to present a re-
vised succint version of our previously best solution for the Byzantine agreement
problem. In contrast to the previous solution, which uses a super-exponential
number of symbols and rules, the new solution uses a fixed sized alphabet and
ruleset, independent of the problem size, and the ruleset follows closely the con-
ceptual description of the algorithm.

Like other versions of P systems, our cP systems are formal models which
can become directly executable, if properly supported by tools. Further research
should address this issue, best by formalising the cP semantics.

Dinneen et al. [7, 8] also mention an open problem which is still unsolved.
Even if their numbers have been substantially reduced, our solution still requires
N2 additional firewalls cells, one of each side of each communication channel.
These firewalls are not conceptually required, as each node could decide which
symbols it should accept and when. Further research is needed on this. Besides
increasing the speed, a proper solution could more generally bring P systems
closer to the Actor model.

Acknowledgments. We are deeply indebted to the co-authors of our former
studies on the Byzantine agreement and to the anonymous reviewers, for their
most valuable comments and suggestions.
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A Appendix
cP Systems : P Systems with Complex Symbols

We present the details of our complex-symbols framework, slightly revised from
our earlier papers [16, 17].

A.1 Complex symbols as subcells

Complex symbols play the roles of cellular micro-compartments or substructures,
such as organelles, vesicles or cytoophidium assemblies (“snakes”), which are
embedded in cells or travel between cells, but without having the full processing
power of a complete cell. In our proposal, complex symbols represent nested data
compartments which have no own processing power: they are acted upon by the
rules of their enclosing cells.

Technically, our complex symbols, also called subcells, are similar to Prolog-
like first-order terms, recursively built from multisets of atoms and variables.
Atoms are typically denoted by lower case letters (or, occasionally, digits), such
as a, b, c, 1. Variables are typically denoted by uppercase letters, such as X,
Y , Z. For improved readability, we also consider anonymous variables, which
are denoted by underscores (“ ”). Each underscore occurrence represents a new
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unnamed variable and indicates that something, in which we are not interested,
must fill that slot.

Terms are either (i) simple atoms, or (ii) atoms (called functors), followed by
one or more parenthesized multisets (called arguments) of other symbols (terms
or variables), e.g. a(b2X), a(X2c(Y )), a(b2)(c(Z)). Functors that are followed by
more than one parenthesized argument are called curried (by analogy to func-
tional programming) and, as we see later, are useful to precisely described deep
‘micro-surgical” changes which only affect inner nested symbols, without directly
touching their enclosing outer symbols. Terms that do not contain variables are
called ground, e.g.:

– Ground terms: a, a(λ), a(b), a(bc), a(b2c), a(b(c)), a(bc(λ)), a(b(c)d(e)),
a(b(c)d(e)), a(b(c)d(e(λ))), a(bc2d); or, a curried form: a(b2)(c(d)e3).

– Terms which are not ground: a(X), a(bX), a(b(X)), a(XY ), a(X2), a(XdY ),
a(Xc()), a(b(X)d(e)), a(b(c)d(Y )), a(b(X)d(e(Y ))), a(b(X2)d(e(Xf2))); or,
a curried form: a(b(X))(d(Y )e3); also, using anonymous variables: a(b ),
a(X ), a(b(X)d(e( ))).

Note that we may abbreviate the expression of complex symbols by removing
inner λ’s as explicit references to the empty multiset, e.g. a(λ) = a().

Complex symbols (subcells, terms) can be formally defined by the following
grammar:

<term> ::= <atom> | <functor> ( ’(’ <argument> ’)’ )+

<functor> ::= <atom>

<argument> ::= λ | ( <term-or-var> )+

<term-or-var> ::= <term> | <variable>

Unification. All terms (ground or not) can be (asymmetrically) matched against
ground terms, using an ad-hoc version of pattern matching, more precisely, a one-
way first-order syntactic unification, where an atom can only match another copy
of itself, and a variable can match any bag of ground terms (including the empty
bag, λ). This may create a combinatorial non-determinism, when a combination
of two or more variables are matched against the same bag, in which case an
arbitrary matching is chosen. For example:

– Matching a(b(X)fY ) = a(b(cd(e))f2g) deterministically creates a single set
of unifiers: X,Y = cd(e), fg.

– Matching a(XY 2) = a(de2f) deterministically creates a single set of unifiers:
X,Y = df, e.

– Matching a(XY ) = a(df) non-deterministically creates one of the following
four sets of unifiers: X,Y = λ, df ; X,Y = df, λ; X,Y = d, f ; X,Y = f, d.

Performance note. If the rules avoid any matching non-determinism, then this
proposal should not affect the performance of P simulators running on existing
machines. Assuming that bags are already taken care of, e.g. via hash-tables,
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our proposed unification probably adds an almost linear factor. Let us recall
that, in similar contexts (no occurs check needed), Prolog unification algorithms
can run in O(ng(n)) steps, where g is the inverse Ackermann function. Our
conjecture must be proven though, as the novel presence of multisets may affect
the performance.

A.2 Generic rules

Rules use states and are applied top-down, in the so-called weak priority order.
Rules may contain any kind of terms, ground and not-ground. In concrete mod-
els, cells can only contain ground terms. Cells which contain unground terms can
only be used to define abstract models, i.e. high-level patterns which characterise
families of similar concrete models.

Pattern matching. Rules are matched against cell contents using the above
discussed pattern matching, which involves the rule’s left-hand side, promoters
and inhibitors. Moreover, the matching is valid only if, after substituting vari-
ables by their values, the rule’s right-hand side contains ground terms only (so
no free variables are injected in the cell or sent to its neighbours), as illustrated
by the following sample scenario:

– The cell’s current content includes the ground term:
n(aφ(b φ(c)ψ(d))ψ(e))

– The following rewriting rule is considered:
n(X φ(Y φ(Y1)ψ(Y2))ψ(Z)) → v(X) n(Y φ(Y2)ψ(Y1)) v(Z)

– Our pattern matching determines the following unifiers:
X = a, Y = b, Y1 = c, Y2 = d, Z = e.

– This is a valid matching and, after substitutions, the rule’s right-hand side
gives the new content :
v(a) n(b φ(d)ψ(c)) v(e)

Generic rules format. We consider rules of the following generic format (we
call this format generic, because it actually defines templates involving variables):

current-state symbols . . . →α target-state (in-symbols) . . .

(out-symbols)δ . . .

| promoters . . . ¬ inhibitors . . .

Where:

– All symbols, including states, promoters and inhibitors, are multisets of terms,
possibly containing variables (which can be matched as previously described).

– Parentheses can be used to clarify the association of symbols, but otherwise
have no own meaning.
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– Subscript α ∈ {min, max} × {min, max}, indicates a combined instantiation and
rewriting mode, as further discussed in the example below.

– In-symbols become available after the end of the current step only, as in
traditional P systems (we can imagine that these are sent via an ad-hoc fast
loopback channel);

– Out-symbols are sent, at the end of the step, to the cell’s structural neigh-
bours. These symbols are enclosed in round parentheses which further in-
dicate their destinations, above abbreviated as δ. The most usual scenarios
include:
• (a) ↓i indicates that a is sent to child i (unicast);
• (a) ↑i indicates that a is sent to parent i (unicast);
• (a) ↓∀ indicates that a is sent to all children (broadcast);
• (a) ↑∀ indicates that a is sent to all parents (broadcast);
• (a) l∀ indicates that a is sent to all neighbours (broadcast).

All symbols sent via one generic rule to the same destination form one single
message and they travel together as one single block (even if the generic rule
has multiple instantiations).

Example. To explain our combined instantiation and rewriting mode, let us con-
sider a cell, σ, containing three counter-like complex symbols, c(12), c(12), c(13),
and the four possible instantiation⊗rewriting modes of the following “decrement-
ing” rule:

(ρα) S1 c(1X)→α S2 c(X),where α ∈ {min,max} × {min,max}.

1. If α = min⊗min, rule ρmin⊗min nondeterministically generates and applies (in
the min mode) one of the following two rule instances:

(ρ′1) S1 c(1
2)→min S2 c(1) or

(ρ′′1) S1 c(1
3)→min S2 c(1

2).

Using (ρ′1), cell σ ends with counters c(1), c(12), c(13). Using (ρ′′1), cell σ
ends with counters c(12), c(12), c(12).

2. If α = max⊗min, rule ρmax⊗min first generates and then applies (in the min mode)
the following two rule instances:

(ρ′2) S1 c(1
2)→min S2 c(1) and

(ρ′′2) S1 c(1
3)→min S2 c(1

2).

Using (ρ′2) and (ρ′′2), cell σ ends with counters c(1), c(12), c(12).

3. If α = min⊗max, rule ρmin⊗max nondeterministically generates and applies (in
the max mode) one of the following rule instances:

(ρ′3) S1 c(1
2)→max S2 c(1) or

(ρ′′3) S1 c(1
3)→max S2 c(1

2).

Using (ρ′3), cell σ ends with counters c(1), c(1), c(13). Using (ρ′′3), cell σ ends
with counters c(12), c(12), c(12).
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4. If α = max⊗max, rule ρmin⊗max first generates and then applies (in the max mode)
the following two rule instances:

(ρ′4) S1 c(1
2)→max S2 c(1) and

(ρ′′4) S1 c(1
3)→max S2 c(1

2).

Using (ρ′4) and (ρ′′4), cell σ ends with counters c(1), c(1), c(12).

The interpretation of min⊗min, min⊗max and max⊗max modes is straightforward.
While other interpretations could be considered, the mode max⊗min indicates that
the generic rule is instantiated as many times as possible, without superfluous
instances (i.e. without duplicates or instances which are not applicable) and each
one of the instantiated rules is applied once, if possible.

If a rule does not contain any non-ground term, then it has only one pos-
sible instantiation: itself. Thus, in this case, the instantiation is an idempotent
transformation, and the modes min⊗min, min⊗max, max⊗min, max⊗max fall back onto
traditional modes min, max, min, max, respectively.

Special cases. Simple scenarios involving generic rules are sometimes seman-
tically equivalent to loop-based sets of non-generic rules. For example, consider
the rule

S1 a(x(I) y(J)) →max⊗min S2 b(I) c(J),

where the cell’s contents guarantee that I and J only match integers in ranges
[1, n] and [1,m], respectively. Under these assumptions, this rule is equivalent to
the following set of non-generic rules:

S1 ai,j →min S2 bi cj , ∀i ∈ [1, n], j ∈ [1,m].

However, unification is a much more powerful concept, which cannot be gen-
erally reduced to simple loops.

Note. For all modes, the instantiations are conceptually created when rules are
tested for applicability and are also ephemeral, i.e. they disappear at the end of
the step. P system implementations are encouraged to directly apply high-level
generic rules, if this is more efficient (it usually is); they may, but need not, start
by transforming high-level rules into low-level rules, by way of instantiations.

Benefits. This type of generic rules allow (i) a reasonably fast parsing and pro-
cessing of subcomponents, and (ii) algorithm descriptions with fixed size alpha-
bets and fixed sized rulesets, independent of the size of the problem and number
of cells in the system (often impossible with only atomic symbols).

A.3 Synchronous vs asynchronous

In our models, we do not make any syntactic difference between the synchronous
and asynchronous scenarios; this is strictly a runtime assumption [15]. Any model
is able to run on both the synchronous and asynchronous runtime “engines”,
albeit the results may differ.
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In the synchronous scenario of traditional P systems, all rules in a step
take together exactly one time unit and then all message exchanges (including
loopback messages for in-symbols) are performed at the end of the step, in
zero time (i.e. instantaneously). Alternatively, but logically equivalent, we here
consider that rules in a step are performed in zero time (i.e. instantaneously) and
then all message exchanges are performed in exactly one time unit. We prefer
the second interpretation, because it allows us to interpret synchronous runs as
special cases of asynchronous runs.

In the asynchronous scenario, we still consider that rules in a step are per-
formed in zero time (i.e. instantaneously), but then, to arrive at its destination,
each message may take any finite real time in the (0, 1] interval (i.e. travelling
times are typically scaled to the travel time of the slowest message). Addition-
ally, unless otherwise specified, we also assume that messages traveling on the
same directed arc follow a FIFO rule, i.e. no fast message can overtake a slow
progressing one. This definition closely emulates the standard definition used
for asynchronous distributed algorithms [13]. Clearly, the asynchronous model
is highly non-deterministic, but most useful algorithms manage to remain con-
fluent.

In both scenarios, we need to cater for a particularity of P systems, where
a cell may remain active after completing its current step and then will auto-
matically start a new step, without necessarily receiving any new message. In
contrast, in classical distributed models, nodes may only become active after
receiving a new message, so there is no self-activation without messaging. We
can solve this issue by (i) assuminging a hidden self-activation message that cells
can post themselves at the end of the step (together with the in-symbols) and
(ii) postulating that such self-addressed messages will arrive not later than any
other messages coming from other cells.

Obviously, any algorithm that works correctly in the asynchronous mode will
also work correctly in the synchronous mode, but the converse is not generally
true: extra care may be needed to transform a correct synchronous algorithm
into a correct asynchronous one; there are also general control layers, such as
synchronisers, that can attempt to run a synchronous algorithm on an existing
asynchronous runtime, but this does not always work [13].

Complexity measures. We consider a set of basic complexity measures similar
to the ones used in the traditional distributed algorithms field.

– Time complexity : the supremum over all possible running times (which, al-
though not perfect, is the most usual definition for the asynchronous time
complexity).

– Message complexity : the number of exchanged messages.

– Atomic complexity : the number of atoms summed over all exchanged mes-
sages (analogous to the traditional bit complexity).
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Abstract. Rewriting P systems, as language generating devices, are one
of the earliest classes of P systems with structured strings as objects and
the rewriting rules as evolution rules. Flat splicing is an operation on
strings, inspired by a splicing operation on circular strings. In this work,
we consider a variant of rewriting P systems with only regular or linear
rewriting rules and alphabetic flat splicing rules, and the language gener-
ative power of rewriting P systems with flat splicing rules in comparison
with flat splicing systems and Chomsky hierarchy is investigated.
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1 Introduction

Membrane computing, which was motivated by the organization and functioning
of living cells, has grown to a great extent in breadth and depth, at least at the
theoretical level, since its introduction by Păun [12, 13] around the year 2000.
The novel computing device in this area, known broadly as P system, has become
a versatile framework in many application problems as well [3]. Among different
varieties of P systems, the rewriting P system considered as a language generat-
ing device, is one of the earliest P system models introduced by Păun [12] with
structured strings as objects and rewriting rules as in formal language theory, in
order to deal with symbolic computations. Subsequently, several variants with
different additional features have been introduced and investigated [2, 4, 8–11].

On the other hand, in the area of DNA computing, Head [5] introduced
a novel operation on strings, called splicing, while modelling the recombinant
behaviour of DNA strings. Inspired by the splicing operation on circular strings
[6], Berstel et al. [1] consider an operation on strings called flat splicing which
“cuts” a string u = xαβy between α and β and inserts in u, a string v = γzδ
between α and β as dictated by a flat splicing rule of the form (α|γ − δ|β). In
particular, when α, β, γ, δ are letters of an alphabet or the empty word, the rule
is called an alphabetic flat splicing rule.

? Corresponding author.
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In this work, we consider a variant of rewriting P systems with only regular
or linear rewriting rules and alphabetic flat splicing rules. The language genera-
tive power of rewriting P systems with flat splicing rules in comparison with flat
splicing systems is investigated. Moreover, the languages generated by rewriting
P systems with flat splicing rules are also compared with the languages in Chom-
sky hierarchy. Specifically, we prove that the context-free languages are included
in the languages generated by rewriting P systems with two membranes, with
a priority relation on the regular rules and initial strings in the regions having
length at least one.

2 Preliminaries

We refer to [16] for concepts and results related to formal grammars and lan-
guages and to [12, 13, 15] for P systems.

An alphabet V is a finite and nonempty set of symbols and a word (also
called a linear word) w is a finite sequence of symbols belonging to V . The set
of all words over V is denoted by V ∗ which includes the empty word λ (with
no symbols) and V + = V ∗ − {λ}. The length |w| of a word w is the number of
symbols in w counting repetitions.

We denote the families of languages generated by context-sensitive, context-
free, linear or regular grammars of the Chomsky hierarchy by CSL, CFL, LIN ,
respectively [16]. The family of finite languages is denoted by FIN .

We recall the notion of flat splicing on words, which was considered by Berstel
et al. [1]. A flat splicing rule r is of the form (α|γ − δ|β), where α, β, γ, δ are
words over the alphabet V . The words α, β, γ, δ are called the handles of the
rule. When all the four handles of the rule r are letters in V or the empty word,
the flat splicing rule r is called alphabetic.

For two words x = uαβv, y = γwδ, u, v, w ∈ V ∗, an application of the flat
splicing rule r = (α|γ − δ|β) to the pair (x, y) yields the word z = uαγwδβv
and we write (x, y) `r z. In other words, an application of the rule r inserts the
second word y between α and β in the first word x yielding the word z. When
α = β = γ = δ = λ, the flat splicing rule is simply (λ|λ−λ|λ) and an application
of this kind of rule allows insertion of any word y into any other word x and the
insertion can be done anywhere in x.

A flat splicing system (FSS) [1] is a triple S = (Σ, I,R), where Σ is an
alphabet, I, called initial set, is a set of words over Σ and R is a finite set of flat
splicing rules. The FSS S is respectively called finite, regular or context-free
according to the I is a finite set, a regular set or a context-free language. The
language L generated by S is the smallest language containing I and such that
for any two words u, v ∈ L and any rule r ∈ R, if the rule r is applicable to the
pair (u, v) and if the word w is obtained on applying the rule r to the pair (u, v),
that is, if (u, v) `r w, then w is also in L. When all the flat splicing rules are
alphabetic, the FSS is called an alphabetic flat splicing system (AFSS). The
families of languages generated by FSS and AFSS are respectively denoted by
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L(FSS,X) and L(AFSS,X) for X = FIN,REG or CF according as the initial
set is finite, regular or CF .

We illustrate an alphabetic flat splicing system and its work with an example.

Example 1. Consider the alphabetic flat splicing system S1 = ({a, b, c}, {ac, b},
R1), where

R1 = {r1 = (a|a− c|c), r2 = (b|b− λ|λ), r3 = (a|b− λ|c).}

Application of the rule r2 to the pair of words (b, b) inserts (the second) b
to the right of (the first b) yielding b2. Likewise applying the rule r2 to the pair
(b, b2) or (b2, b) yields b3. Note that an application of r2 to the pair (b2, b) can
insert b to the right of b2 or between the two b′s. Thus proceeding like this, the
words generated will be of the form bn, n ≥ 1. In a similar manner, applying the
rule r1 to the pair (ac, ac) will yield a2c2 and continuing this we obtain words
of the form ancn, n ≥ 1. On the other hand, using the rule r3 to the pairs of the
form (ancn, bm), n,m ≥ 1, yields the word anbmcn. The language generated by
S1 is

L(S1) = {bn|n ≥ 1} ∪ {ancn|n ≥ 1} ∪ {anbmcn | n,m ≥ 1}.

It has been shown in [1] that alphabetic flat splicing rules and context-free
initial sets can produce only context-free languages.

Theorem 1. [1] The language generated by an alphabetic flat splicing system
with context-free initial set is context-free.

Insertion/deletion systems have been investigated in the context of study
on models in DNA computing (see, for example, [14], chapter 6) and a number
of language theoretical results have been established. In particular, insertion
systems have close similarity with flat splicing systems as pointed out in [1]. But
it has been shown in [1] that these two systems generate incomparable families
of languages. We now recall insertion systems as described in [1].

An insertion system γ = (Σ, I,R), where Σ is a nonempty alphabet, I, called
the initial set, is a finite nonempty set of words over Σ and R is a finite nonempty
set of rules, called insertion rules, of the form (u|β|v), where u, β, v are words
over Σ. Given a word w of the form w = xuvy, an application of the rule (u|β|v)
generates the word w′ = xuβvy. The language generated by the system γ is
the set of words over Σ obtained by repeated application of the insertion rules,
starting with the words in the initial set I. The family of languages generated by
insertion systems is denoted by L(ins). An insertion system is alphabetic if the
contexts u, v of the rules (u|β|v) have length at most 1. The family of languages
generated by insertion systems as defined above, is denoted by L(ins) and by
L(ains) when the insertion systems are alphabetic.

The following results on (alphabetic) insertion systems and flat splicing sys-
tems are known [1].

Theorem 2. (i) The families of languages generated by flat splicing systems
and insertion systems are incomparable.

(ii) Alphabetic insertion systems always generate context-free languages.
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3 A Rewriting P System with Linear Rewriting Rules
and Alphabetic Flat Splicing Rules

We now introduce a cell-like rewriting P system with internal output computing
languages of structured strings. The regions of the P system can have regular or
linear rewriting rules and/or alphabetic flat splicing rules and initial objects in
the regions are only symbols from an alphabet.

Definition 1. A rewriting P system with linear rules and/or alphabetic flat
splicing rules of degree m ≥ 1 (RPm(LIN/AFSR)) is

Π = (V, T, µ, F1, · · · , Fm, R1, · · · , Rm, io),

where

(i) V is the total alphabet of the system;
(ii) T ⊂ V is the terminal alphabet;

(iii) µ is the membrane structure consisting of m membranes labelled in a one-
to-one way with 1, . . . ,m;

(iv) F1, . . . , Fm are finite subsets of V associated with the m regions of µ (the
elements of Fi, 1 ≤ i ≤ m, are called initial symbols);

(v) R1, . . . , Rm are finite sets of rules associated with the m regions of µ;
(vi) io is the label of an elementary membrane of µ, called the output membrane.

A rule in a region can be a linear rewriting rule of the form A → αBβ or
A→ γ, A,B ∈ V −T , α, β, γ ∈ V ∗ or an alphabetic flat splicing rule as described
earlier. The rules have attached targets here, out, in (in general, here is omitted).
A linear rule in a region rewrites a string in the region as in a Chomsky grammar
while an alphabetic flat splicing rule in a region is applied to a pair of strings
in the region. If the rewriting rules in the regions are only regular rules of the
form A → αB or A → γ, A,B ∈ V − T , α, γ ∈ V ∗, then we denote the system
as RPm(REG/AFSR).

A computation in a RPm(LIN/AFSR) is defined in a way similar to a string
rewriting P system [12, 13]. A computation starts from an initial configuration
defined by the membrane structure with the initial symbols, if any, in the m
regions. The rules in a region are used in a nondeterministic maximally parallel
manner which means that the strings to evolve and the rules to be applied to
them are chosen in a nondeterministic manner, but all strings in all the regions
which can evolve at a given step should do it. On the other hand, the application
of a linear rule to a string in a region or an alphabetic flat splicing rule to a pair
of strings in a region, is sequential in the sense that only one rule is applied to
a string or a pair of strings, resulting in an evolved string which is placed in
the region indicated by the target associated with the rule used. The target here
means that the evolved string remains in the same region, out means that the
evolved string exits the current membrane (if the rule was applied in the skin
membrane, then it can exit the system such that strings leaving the system are
“lost” in the environment), and in means that the string is sent to one of the
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directly lower membranes, nondeterministically chosen if there exist several of
them (if no internal membrane exists, then a rule with the target indication in
cannot be used).

A computation is successful only if it stops reaching a configuration where no
rule can be applied to the existing strings. The result of a halting computation
consists of strings is composed only of symbols from T placed in the output
membrane in the halting configuration. The set of all such strings computed
(also called generated) by the system Π is denoted by L(Π).

The family of all languages L(Π) generated by systems Π as above, with
at most m membranes, with linear rules and/or flat splicing rules is denoted
by L(RPm(LIN/AFSR)). If the rewriting rules are regular the corresponding
family is denoted by L(RPm(REG/AFSR)).

In order to illustrate the definition of RPm(REG/AFSR), we give the fol-
lowing example.

Example 2. Consider the RP2(REG/AFSR)

Π1 = ({S1, S2, A,B1, B2, B3, a, b, c, d}, {a, b, c, d}, [1 [2 ]2 ]1, {S1, S2}, ∅, R1, R2, 2),

where R1 consists of the regular rewriting rules

S1 → B1, S1 → cB2, S1 → acB3, S2 → xyA,

B1 → acB1, B2 → acB2, B3 → acB3, A→ dbA

and the alphabetic flat splicing rules

(λ|x−A|B1), (λ|x−A|B2), (λ|x−A|B3),

with all the three alphabetic flat splicing rules having target indication “in”
while R2 consists of the following regular rewriting rules:

A→ λ,B1 → λ,B2 → λ,B2 → d,B3 → d.

Computation in Π1 takes place as follows: The region 1 has axiom strings
S1, S2 while region 2 has none initially. One of the three rules S1 → B1, S1 →
cB2, S1 → acB3 in region 1 could be applied to the axiom string S1 initially. If
we start with applying the rewriting rule S1 → B1 to the axiom string S1 and
follow it by the application of the rule B1 → acB1, for certain times, say n times
(n ≥ 1), then this yields the string (ac)nB1. Simultaneously, in region 1, the
axiom string S2 yields the string xy(db)nA (for the same n) by the application
of the rule S2 → xyA followed by the application of the rule A→ dbA for n times.
If at this stage the alphabetic flat splicing rule (λ|x − A|B1) in region 1, with
target indication “in” is applied to the pair ((ac)nB1, xy(db)nA), then the string
(ac)nxy(db)nAB1 is generated and is sent to region 2, where the application of
the rules A → λ,B1 → λ erase the symbols A,B1 thereby yielding the string
(ac)nxy(db)n.

Likewise, if we start with applying the rewriting rule S1 → cB2 to the axiom
string S1 in region 1 and follow it by the application of the rule B2 → acB2,
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for certain times, say n times (n ≥ 1), then this yields the string c(ac)nB2.
Again the alphabetic flat splicing rule (λ|x − A|B2) in region 1, with target
indication “in” can be applied to the pair (c(ac)nB2, xy(db)nA), then the string
c(ac)nxy(db)nAB2 is generated and is sent to region 2, where the application
of the rule A → λ, and either B2 → λ or B2 → d erase the symbol A and
either erase B2 or replace it by d thereby yielding the string c(ac)nxy(db)n or
c(ac)nxy(db)nd. Generation of strings of the form (ac)nxy(db)nd is similar with
the computation in region 1 starting with applying the rule S1 → acB3 to the
axiom string S1 and following it by the application of the rule B3 → acB3 certain
number of times, so that the alphabetic flat splicing rule (λ|x−A|B3) applied to
the pair (ac(ac)nB3, xy(db)nA) will yield and send the string ac(ac)nxy(db)nAB3

to region 2, where A is erased and B3 is replaced by d. Thus the language
L generated by Π1 is L = L(Π1) = M ∪ cM ∪ cMd ∪ acMd, where M =
{(ac)nxy(db)n|n ≥ 0}.

Remark 1. The language L in Example 2 is in fact considered in [1] and an
alphabetic flat splicing system with six rules is given generating L. It has also
been shown that L cannot be generated by an insertion system.

We now examine the generative power of the rewriting P systems with regular
and/or flat splicing rules.

Theorem 3. (i) L(RP1(REG/AFSR))− L(FSS, FIN) 6= ∅;
(ii) L(RP1(REG/AFSR))− L(ins) 6= ∅.

Proof. The language L1 = {xany|n ≥ 0} over the alphabet {x, a, y} is not in
the family L(FSS, FIN) as shown in [1]. But clearly, it is in RP1(REG/AFSR)
since we can have a RP1(REG/AFSR) with only one membrane containing
regular rules S → xA,A → aA,A → y with the initial symbol S generating
L1. We do not need any alphabetic splicing rules in the membrane. This proves
statement (i).

In order to prove statement (ii), we note that the language L = M ∪ cM ∪
cMd∪acMd is shown to be not L(ins) in [1], whereM = {(ac)nxy(db)n|n ≥ 0} in
Example 2. But it is inRP1(REG/AFSR) since we can have aRP1(REG/AFSR)
with only membrane containing initial symbols S, a, b, c, d, a regular rule S → xy
and the following six alphabetic flat splicing rules (as in [1]) (c|x − y|λ), (λ|c −
y|d), (a|c−d|λ), (λ|a−d|b), (c|a− b|λ), (λ|c− b|d). In fact, these alphabetic splic-
ing rules alone are shown to generate L in [1], but their initial set has xy (a
string of length more than 1) and so we have included the rule S → xy in the
membrane to generate xy. Note that we have defined the initial objects in the
regions of the P system to be only symbols (of length 1). This proves statement
(ii). ut

Theorem 4. (i) REG ⊂ L(RP1(REG/AFSR)) ⊂ L(RP2(REG/AFSR));
(ii) L(RP2(REG/AFSR))− L(FSS,REG) 6= ∅;
(iii) L(RP2(REG/AFSR)) contains a context-sensitive language which is

not context-free. As a consequence, L(RP2(REG/AFSR))− CSL 6= ∅.
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Proof. The inclusion REG ⊆ L(RP1(REG/AFSR)) is straightforward as the
regular rules generating a regular language can be taken as the rules in the only
one membrane of a corresponding RP1(REG/AFSR) (with no alphabetic flat
splicing rule in the region) and the start symbol of the grammar is the initial
object in the membrane. The proper inclusion in statement (i) follows by noting
that the language L in the proof of statement (ii) of Theorem 3 is a non-regular
language but is in L(RP1(REG/AFSR)).

In order to prove statement (ii), we note that the inclusion L(RP1(REG/
AFSR)) ⊆ L(RP2(REG/AFSR)) holds by definition while the proper inclusion
is seen by considering the non-regular context-free language L2 = {xanbny|n ≥
1} over the alphabet {x, y, a, b}. In fact, the following RP2(REG/AFSR), Π2,
generates L:

Π2 = ({S1, S2, A,B, x, y, a, b}, {x, y, a, b}, [1 [2 ]2 ]1, {S1, S2}, ∅, R1, R2, 2),

where R1 consists of the regular rules S1 → xA,A→ aA, S2 → B,B → bB and
the alphabetic flat splicing rule (a|λ − B|A) with target in. R2 consists of the
regular rules A→ a,B → λ.

In fact, in region 1, the initial symbols S1, S2 respectively generate xanA and
bnB (for the same n ≥ 1) and if at this stage, the alphabetic flat splicing rule
is applied to the pair (xanS1, b

nB), then the string xanAbnB is generated and
is sent to region 2. Here in region 2, the application of the rules A→ a,B → λ
yields the string xanbny.

But the language L2 cannot be generated by any RP1(REG/AFSR) with
only one membrane. In fact, regular rules alone are not enough as the language
is non-regular while alphabetic flat splicing rules alone are not enough which
can be shown by an argument similar to the one given in [1] in proving that the
language {xany|n ≥ 0} is not a flat splicing language. On the other hand, if we
assume that the only membrane has some regular rules and some flat splicing
rules that can generate the words xanbny, then strings with some powers of a
or powers of b cannot be inserted independently between x and y. The only
possibility is to insert between x and y for some string having the form anbn

with suitable nonterminals, if any, in between. Since the nonterminals are to
be erased ultimately, the only membrane should have rules which will lead to
terminal strings of the required form. But this would mean that strings (without
the symbols x, y) not in the language will be generated. This shows only one
membrane is not enough.

In order to prove statement (iii), consider the language

L3 = {cp | p ≥ 1} ∪ {anbn | n ≥ 1} ∪ {anbncn+m | n,m ≥ 1},

which is context-sensitive and not context-free. The followingRP2(REG/AFSR)
generates the language L3:

({S1, S2, S3, a, b, c}, {a, b, c}, [1 [2 [3 ]3 ]2 ]1, {S1, S2}, {S3}, R1, R2, 2),

where R1 consists of the regular rules S1 → aS1, S2 → bS2 and an alphabetic flat
splicing rule (a|b−S2|S1), in while R2 consists of the regular rules S1 → λ, S2 →
λ, S3 → λ, S3 → cS3 and an alphabetic flat splicing rule (S2|c− S3|S1), in.
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The computation takes place as follows: In region 1, S1, S2 generate the
strings anS1 and bnS2, while at the same time in region 2, S3 generates cnS3.
At this point if the alphabetic flat splicing in region 1 takes place on the pair
(anS1, b

nS2), then the string generated is anbnS2S1 which is sent to region 2.
Here application of the regular rule S3 → cS3 could take place, say m times, so
that the string generated is cn+mS3 (m ≥ 1). If at this point, the alphabetic flat
splicing rule is applied on the pair (anbnS2S1, c

n+mS3), the string generated is
anbnS2c

n+mS3S1. At the same time, prior to applying the flat splicing rules, if
the erasing rules are applied, strings of the form cp, anbn will be generated. Thus
the language generated is L3.

Theorem 5. L(RP1(LIN/AFSR)) ⊂ L(RP2(LIN/AFSR)).

Proof. The inclusion holds by definition. In order to prove proper inclusion,
consider the language L4 = {anbncn | n ≥ 1}, which is context-sensitive and not
context-free. The following RP2(LIN/AFSR) generates the language L4:

({S1, S2, a, b, c}, {a, b, c}, [1 [2 ]2 ]1, {S1, S2}, ∅, R1, R2, 2),

where R1 consists of the linear rules S1 → aS1c, S2 → bS2 and an alphabetic
flat splicing rule (a|b−S2|S1), in, while R2 consists of the rules S1 → λ, S2 → λ.
The computation takes place as follows: In region 1, S1, S2 generate the strings
anS1c

n and bnS2 for the same n. At this point if the alphabetic flat splicing
in region 1 is applied on the pair (anS1c

n, bnS2), then the string generated is
anbnS2S1c

n which is sent to region 2. Here application of the rules S1 → λ, S2 →
λ erases the nonterminals, thus yielding the string anbncn.

On the other hand, one membrane is not enough to generate L4 since AFSS
rules alone cannot generate the non-CF language due to Theorem 1, while linear
rules alone are also not enough. So if both types of rules are included in the only
membrane to generate L4, then the nonterminals of the linear rules are to be
erased or replaced by terminal strings finally. But this will lead to strings not in
L4.

4 RPm(REG/AFSR) with Extended Initial Objects

In rewriting P systems [12] generating languages, the initial objects in the mem-
branes can be strings of finite languages. This means that strings of length more
than one can be the initial objects unlike the objects in RPm(LIN/AFSR) or
RPm(REG/AFSR) considered here so far, where the initial objects are symbols
from the alphabet.

Instead of recalling the formal details of the definition of a rewriting P system
[12], we illustrate with an example of a rewriting P system having regular rules in
its regions and computing a context-free language. Note that the system works
in maximal parallelism manner, but at the level of a membrane the rewriting by
a rule is sequential and the rewritten string moves to the membrane indicated
by the target.
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Example 3. Consider the rewriting P system of degree 2 with regular rewrit-
ing rules, given by (V, T, µ, L1, L2, R1, R2, 2), where the total alphabet V =
{A,B, a, b}, the terminal alphabet T = {a, b}, the membrane structure µ =
[1 [2 ]2 ]1. The sets of initial strings in the membranes are given by L1 = ∅, L2 =
{AB}. The sets R1, R2 with regular rules with associated targets (here, in or
out) are given by

R1 = {B → bB(in)}, R2 = {A→ aA(out), A→ a(here), B → b(here)}.

Computation in this P system will take place as follows: Only the membrane
2 has an initial string AB (of length 2) which will evolve by the sequential
application of a rule in region 2. If the rule A → aA(out) is applied to AB,
the generated string aAB is sent to region 1, where the application of the rule
B → bB(in) generates aAbB which is sent back to region 2. The process can
repeat or terminate by the application of the rules A → a(here), B → b(here)
yielding words of the form anbn, n ≥ 1. The language generated is a non-regular
context-free language {anbn | n ≥ 1}. An application of the rule B → b followed
by the application of the rule A→ aA(out) will send the string to region 1 where
it will get stuck. Note that if in region 2, the initial string is allowed to have
length not more than 1, this language cannot be generated with regular rules
and two membranes.

We now allow in our definition of RPm(REG/AFSR) initial objects to have
length more than 1 but continue to refer to such a system by RPm(REG/AFSR)
itself. A priority relation > on the rules is a well-known notion used in P systems.
If a region has rules r1, r2 with r1 > r2, then if both the rules could be applied to
strings in that region, only r1 is applied. We denote such a system with a priority
relation on the regular rules in the regions and initial strings in the regions having
length one or more by RPm(REG/AFSR, pri). The corresponding family of
languages is denoted by L(RPm(REG/AFSR, pri)).

Theorem 6. CFL ⊂ L(RP2(REG/AFSR, pri)).

Proof. Let L (without the empty word) be a context-free language and G =
(N,Σ,P, S) be a context-free grammar in Chomsky normal form with P con-
sisting of n rules of the form A → BC or A → a generating L. The members
of N are the nonterminals and those of T are terminals of G with S ∈ N
as the start symbol. We construct a RP2(REG/AFSS, pri) Π3 to generate L.
Π3 = (V, T, [1 [2 ]2 ]2, L1, L2, (R1, >), R2, 2), where V = N ∪ Σ ∪ {Fi, E,E

′ |
Fi, E,E

′ /∈ N, 1 ≤ i ≤ n}, T = Σ, such that with each rule ri, 1 ≤ i ≤ n, a
distinct symbol Fi is associated. We set

L1 = {SE,FjBC,Fka | rj : A→ BC ∈ P, rk : A→ a ∈ P,

Fj , Fk are associated with rules rj , rk},

L2 = ∅,

R1 = {(A|Fj − C|α), (A|Fk − a|α) | rj : A→ BC, rk : A→ a,

– 257 –



Proceedings of CMC 17 Milan, 25-29 July, 2016

A,B,C ∈ N, a ∈ Σ,α ∈ V − {Fi|1 ≤ i ≤ n}} ∪ {(E|E′ − λ|λ)(in)},
R2 = {X → λ | X ∈ N ∪ {Fi, E,E

′ | 1 ≤ i ≤ n}}.
As usual, we omit mentioning the target “here”. The priority relation >

on the rules of R1 is defined as follows: r > (E|E′ − λ|λ) for each rule r in
R1 − {(E|E′ − λ|λ)}. The construction is very close to a similar result in [7].

It can be seen that a derivation in the context-free grammar G starting from
S and leading to a word in L can be simulated by Π3 as follows: The computation
starts with the initial string SE in membrane 1 and the result of rewriting by a
rule of the form A→ BC is captured by inserting FjBC (Fj being the associated
symbol) to the immediate right of the symbol A in the currently generated word.
Likewise, corresponding to the application of the rule A→ a, the word Fka (Fk

being the associated symbol) is inserted again to the immediate right of A. Due
to the priority, only when no other rule could be applied, the rule (E|E′ − λ|λ)
could be applied which will send the current word to the membrane 2. Here all
the nonterminals (symbols not in Σ) are erased and the resulting terminal word
is collected in the language, thus generating the context-free language L.

Finally, we note that in Theorem 4, a RP2(REG/AFSR) is shown to gener-
ate a context-sensitive language which is not context-free. This shows that the
inclusion is proper.

5 Conclusions and Discussions

In this work, we have considered rewriting P systems with simple rewriting rules
and flat splicing rules with a sequential application of rules to an object in
a membrane, and the language generative power of such P systems has been
investigated. It may be of interest to examine the power of parallel application
of rules as in L systems with similar simple rewriting rules.

The language generative power of rewriting P systems with regular rules and
flat splicing rules in comparison with flat splicing systems has been investigated
in section 3. It is of interest to investigate whether rewriting P systems with
regular rules and flat splicing rules can generate any recursively enumerable
language.

The priority relation has been considered in rewriting P systems in section
4, which ensures that the context-free grammar is simulated correctly. It re-
mains open whether the result in Theorem 6 still holds if the priority relation is
removed.
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10. Păun, A.: P Systems with Global Rules, Theor. Comput. Syst. 35(5), 471–481
(2002)
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Abstract. The Apriori algorithm plays an important role in data min-
ing and data analysis, which can help people to discover useful knowl-
edge from large amounts of data. In this paper, an improved Apriori
algorithm based on the tissue-like P system is constructed, which pro-
vides new ideas and methods for mining the frequent itemsets. Since the
P system has an advantage of great parallelism, it can reduce the com-
putational time complexity and is suitable for the cluster problem. The
proposed improved Apriori algorithm is a new attempt in the applica-
tions of membrane system and it provides a novel perspective of cluster
analysis.

Keywords: Frequent itemsets; the Apriori algorithm; Membrane Computing;
P System; Membrane System

1 Introduction

The implicit pattern or knowledge can be extracted from huge amounts of data
by data mining techniques. Frequent itemsets mining, as one of the important
areas of data mining, is an effective method to pack data and discover useful
information from these data. It is a hot area of research in machine learning,
statistics, biology and many other fields. Through frequent itemsets mining, the
interesting association between the items in the relational data base can be dis-
covered which can help many businessmen make decisions such as classification
design, cross-selling and customer buying habits analysis [1]. With the emer-
gence of big data, which shows several characteristics, such as volume, variety,
velocity, and value, the data mining is paid a greater attention [2]. People need
more efficient algorithms to deal with the big data. Membrane computing, as a
new biological computing model, has maximal parallelism and can significantly
improve the efficiency of computation.

⋆ Project supported by the Natural Science Foundation of China (No. 61170038,
61472231, 61402187, 61502535, 61572522 and 61572523).
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Apriori algorithm, as one of the most influential frequent itemsets mining
algorithms, mines the frequent itemsets through two stages: the generation of
candidate sets and the downward close detection of plot. It is suitable for fre-
quent itemsets mining over transactional databases. The frequent itemsets the
algorithm discovers can be used to determine the association rules which can
highlight the general trends in database [3]. Inokuchi et al. [4] proposed an
Apriori-based algorithm to mine frequently appearing induced subgraphs in a
given graph data set in 2000. Baker and Prasanna [5] reduced time required for
processing through the use of a new extension to the systolic array architecture
in 2005. Perego et al. [6] used an innovative method for storing candidate item-
sets and counting their support in 2001. Lazcorreta et. al [7] proposed a two-step
modified Apriori algorithm in 2008. Singh et al. [8] used transaction reduction
to improve the efficiency of the algorithm in 2013. Bhandari et al. [9] used a fre-
quent pattern tree to improve the algorithm in 2014. Cheng et al. [10] proposed
a differential privacy (DP)-Apriori algorithm which can simultaneously provide
a high level of data utility and a high level of data privacy in 2015.

P system, the computing model of the new biological calculation method
membrane computing, is abstracted based on the structure and function of the
cell. There are three mainly investigated P systems, cell-like P systems [11],
tissue P systems [12], and neural-like P systems (also known as spiking neural
P systems) [13] (and their variants, see e.g. [14, 15]). P systems are known as
powerful computing models, are able do what Turing machine can do [16-19].
The parallel evolution mechanism of variants of P systems, such as numerical P
systems [20], spatial P systems [21], spiking neural P systems with anti-spikes
[22], have been found to perform well in doing computation, even solving com-
putational hard problems [23].

Since the volume characteristic of big data, it is very difficult for the ex-
isting computing model to obtain the calculation results quickly. P system is
also suitable for data processing [24, 25]. Membrane computing has been widely
applied to many fields such as biology [26, 27], linguistics [28, 29], network com-
munication [30, 31], and graphics [32, 33]. But the application in data mining,
especially in frequent itemsets mining, is less. Using the membrane computing
to the clustering can reduce the time complexity of clustering, so it has a certain
theoretical and practical significance.

The Apriori algorithm and the membrane computing are combined in this
study to mine the frequent itemsets over transactional databases. An improved
Apriori algorithm is proposed first. This algorithm searches all records syn-
chronously and generates the support number. The membrane structure is initial-
ized next and the rules of algorithm are determined using the improved Apriori
algorithm. The computational process is analysed next.

2 The Improved Apriori Algorithm

Apriori algorithm is an frequent itemsets mining algorithm designed for trans-
actional databases specially. The idea is simple which is based on the recursive
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statistics to generate frequent itemsets and is easy to be implemented.

In a transaction database D, each transaction is a collection of items. A
collection of items is called itemset. An itemset which contains k items is called
k itemset. The frequency of an itemset is the number of transactions which
consists of this itemset. The frequency of an itemset is also called support count
or count. If the support of itemset I meets the corresponding minimum support
count threshold, itemset I is called a frequent itemset.

Firstly it identifies the itemset with all frequent individual items of the
database. Secondly it repeats the steps below: 1. Derive the candidates with
k items by connecting each two k − 1 items which has only one different item
and deleting the items which have subitems of length k − 1 that do not belong
to the k − 1 itemset. 2. Scan the database to compute the frequencies of each
candidate. 3. Delete the infrequent items to gain the frequent itemsets of size k.
4. If no items in k itemset, the circulation stops. Finally all itemsets are gener-
ated into one collection. The item sets gained by the Apriori algorithm can be
used to find association rules. Association rules are very useful in market basket
analysis and other domains [34, 35].

Although this algorithm is very classical and useful, it has a very big weak-
ness: its time complexity is high (O(D2nhht)) [42]. Because the original Apriori
algorithm has the deficiency of high time complexity, this paper puts forward an
improved Apriori algorithm to reduce it. When we scan the database to compute
the frequencies of each candidate, the improved Apriori algorithm searches all
records synchronously and the support number will be generated at the same
time. (The parallelism here is realized by the parallelism of the P system. The
detail of the P system will be introduced below.) One item is added to the cor-
responding itemset only if its support meets the threshold conditions. That is to
say, a parallel Apriori algorithm is proposed based on the tissue-like P system.
This improvement will considerably reduce the time complexity of the algorithm.

3 Rules

3.1 Tissue-like P system

Since the concept of membrane computing was proposed, investigators have pro-
posed different types of P systems simulating the different biochemical response
mechanisms of the cells or tissue. These P systems can be roughly divided into
three categories: cell-like P systems, tissue-like P systems and neural-like P sys-
tems. They are abstract models calculated from the cells, tissues, and nervous
system [36, 37]. Here we assume that the readers have the basic knowledge about
the membrane computing, so we don’t introduce in detail. Readers can refer [38]
for more.

Tissue-like P system is an important extension model of cell-like P system.
Tissue-like P system has many cells which are freely placed in the same environ-
ment. Both the cells and the environment can contain objects. Cells and cells
or cells and the environment can communicate by rules. If the communication
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Fig. 1. The basic membrane structure

channels between cells are given in advance by the rules (fixed), such a P system
is called basic tissue-like P system. The basic tissue-like P system used below is
introduced here [39,40].

The basic membrane structure is shown in Fig. 1. In general, a basic tissue-
like P system of degree m is a construct:

∏
= (O,σ1,σ2,...,σm, syn,iout) (1)

where:

(1) O is the alphabet which includes all objects of the system;

(2) syn ⊆ {1, 2, ...,m} ∗ {1, 2, ...,m} shows all channels between cells;

(3) iout ∈ {1, 2, ...,m} is the output cell which shows the computational result
of the system;

(4) σ1, σ2, ..., σm represent the m cells respectively. Each cell is in the form:

σi = (wi,o, Pi), 1 ≤ i ≤ m (2)

where:

(a) wi,o comprises the initial objects in cell i, we use the object λ to show
there is no object in cell i;

(b) Pi is the set of rules in cell i with the form of (u → v)r, u is a string
composed of objects in O and v is a string in the form of v = v′ or v = v′δ. v′

is a string over {ahere, aout, ainj
|a ∈ O, 1 ≤ j ≤ m}. δ is a symbol not in O. It

means after executing the rule this membrane will be dissolved. r stands for the
promoters or the inhibitors and it is in the form of r=r′ or r= ¬r′. A rule can
execute only when the promoters r′ appear and a rule can stop only when the
inhibitors appear. The radius of this rule u → v is the length of u. We use the
object λ to show there is no rule in cell i.
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Fig. 2. The tissue-like P system for the Apriori algorithm

Rules are executed in the maximum parallel way and in the uncertain way in
each membrane. That is to say, rules should be used in parallel to the maximum
degree possible. If more than one rule can be used possibly but the objects
in membrane can only support parts of rules to be used, the rules which are
used are chosen uncertainly. This is very helpful to solve the computationally
hard problems. The P system will halt after some steps if no more rules can be
executed or an end mark appears and these objects in output membrane is the
final result. The P system will not halt if rules are always executed, then this
calculation is invalid, and there is no result being exhibited [41].

3.2 Rules of the improved Apriori algorithm based on the

Tissue-like P system

The P system for the improved Apriori algorithm is proposed here. Its structure
is depicted in Fig. 2. It uses the subscript i, j of the entries aij to represent the
j-th field of the i-th record in the database and k to represent the threshold of
the supports. The database D has |D| records and |t| fields. So the P system for
the algorithm is defined as follows:

Π = (O, σ1, σ2, . . . , σ|t|+1, syn, iout) (3)

where:

(1) O = {ajp, βi1 , βi1i2 , ..., βi1i2...i|t| , δi1 , δi1i2 , ..., δi1i2...i|t| , θi1 , θi1i2 , ..., θi1i2...i|t| ,
ϕ, α, 1 ≤ j ≤ |D|, 1 ≤ p, i ≤ |t|}

(2) syn = {{0, 1}{0, 2}, ..., {0, |t|}, {1, |t|+ 1}, {2, |t|+ 1}, ..., {|t|, |t|+ 1}
{1, 2}{2, 3}...{|t| − 1, |t|}}

(3) iout = |t|+ 1
(4) σ0 = (w0,0, P0), where:

w0,0 = λ
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P0 : r1 = {aij → (aij , go) |1 ≤ i ≤ |D|, 1 ≤ j ≤ |t|}

σ1 = (w1,0, P1), where:

w1,0 = {βk
i 1 ≤ i ≤ |t|, δ11, δ21, ..., δ|t|1, θ

k
1 , θ

k
2 , ..., θ

k
|t|}

P1 :
r1 = {δ1iai1β

j
1 → δ1(i+1)ai1β

j−1
1 ∪ (δ1iai1θ

j
1)¬β1

→ δ1(i+1)ai1θ
(j+1)
1

∪ (δ1i)¬ai1
→ δ1(i+1)}

∪ {δ2iai2β
j
2 → δ2(i+1)ai2β

j−1
2 ∪ (δ2iai2θ

j
2)¬β2

→ δ2(i+1)ai2θ
(j+1)
2

∪ (δ2i)¬ai2
→ δ2(i+1) }

...

∪{δ|t|iai|t|β
j

|t| → δ|t|(i+1)ai|t|β
j−1
|t| ∪(δ|t|iai|t|θ

j

|t|)¬β|t|
→ δ|t|(i+1)ai|t|θ

(j+1)
|t|

∪ (δ|t|i)¬ai|t|
→ δ|t|(i+1)}(1 ≤ i, j ≤ |D|)

r2 = {δi(|D|+1)(θ
j
i )¬βi

→ θ
j
iαi(αi, go)} ∪ {δi(|D|+1)β

j
i θ

k
i → λ}

(1 ≤ i ≤ |t|, 1 ≤ j ≤ |D|)
r3 = {()¬αi

→ #|1 ≤ i ≤ |t|}

σ2 = (w2,0, P2), where:

w2,0 = λ

P2 :
r1 = {(αiαj)¬δ1ij → αiαjδ1ijβ

k
ijθ

k
ij |1 ≤ i < j ≤ |t|, 1 ≤ k ≤ |D|}

r2 = {αi → λ|1 ≤ i ≤ |t|}
r3 = {δtijatiatjβ

p
ij → δ(t+1)ijatiatjβ

p−1
ij }

∪ {(δtijatiatjθ
p
ij)¬βij

→ δ(t+1)ijatiatjθ
(p+1)
ij }

∪ {(δtij)¬atiatj
→ δ(t+1)ij}(1 ≤ t, p ≤ |D|, 1 ≤ i, j ≤ |t|)

r4 = {δ(n+1)ij(θ
t
ij)¬βij

→ θtijαij(αij , go) ∪ δ(n+1)ijβ
t
ijθ

k
ij → λ}

(1 ≤ i, j ≤ |t|, 1 ≤ t ≤ |D|)
r5 = {()¬αij

→ #|1 ≤ i, j ≤ |t|}

...

σ|t|−1 = (w|t|−1,0, P|t|−1), where:

w|t|−1,0 = λ

P|t|−1 :
r1 = {(αi1i2...i|t|−3j1αi1i2...i|t|−3j2)¬δ1i1i2...i|t|−3

j1j2
→

αi1i2...i|t|−3j1αi1i2...i|t|−3j2δ1i1i2...i|t|−3j1j2β
k
i1i2...i|t|−3j1j2

θkii1i2...i|t|−3j1j2

(1 ≤ i < j ≤ |t|, 1 ≤ k ≤ |D|)
r2 = {αi1i2...i|t|−2

→ λ|1 ≤ i ≤ |t|}
r3 = {δti1i2...i|t|−3j1j2ai1ai2 ...ai|t|−3

aj1aj2β
p
i1i2...i|t|−3j1j2

→

δ(t+1)i1i2...i|t|−3j1j2ai1ai2 ...ai|t|−3
aj1aj2β

p−1
i1i2...i|t|−3j1j2

}

∪ {(δti1i2...i|t|−3j1j2ai1ai2 ...ai|t|−3
aj1aj2θ

p
i1i2...i|t|−3j1j2

)¬βij
→

δ(t+1)i1i2...i|t|−3j1j2ai1ai2 ...ai|t|−3
aj1aj2θ

p+1
i1i2...i|t|−3j1j2

}

∪ {(δti1i2...i|t|−3j1j2)¬ai1
ai2

...ai|t|−3
aj1

aj2
→ δ(t+1)i1i2...i|t|−3j1j2

(1 ≤ t, p ≤ |D|, 1 ≤ i, j ≤ |t|)
r4 = {δ(|D|+1)i1i2...i|t|−3j1j2(θ

t
i1i2...i|t|−3j1j2

)¬βi1i2...i|t|−3
j1j2

→

θti1i2...i|t|−3j1j2
αi1i2...i|t|−3j1j2(αi1i2...i|t|−3j1j2 , go)}

∪ {δ(|D|+1)i1i2...i|t|−3j1j2β
t
i1i2...i|t|−3j1j2

θki1i2...i|t|−3j1j2
→ λ}
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(1 ≤ i, j ≤ |t|, 1 ≤ t ≤ |D|)
r5 = {()¬αi1i2...i|t|−1

→ #|1 ≤ i ≤ |t|}

σ|t| = (w|t|,0, P|t|), where:
w|t|,0 = λ

P|t| :
r1 = {(αi1i2...i|t|−2j1αi1i2...i|t|−2j2)¬δ1i1i2...i|t|−2

j1j2
→

αi1i2...i|t|−2j1αi1i2...i|t|−2j2δ1i1i2...i|t|−2j1j2β
k
i1i2...i|t|−2j1j2

θkii1i2...i|t|−2j1j2
}

(1 ≤ i < j ≤ |t|, 1 ≤ k ≤ |D|)
r2 = {αi1i2...i|t|−1

→ λ|1 ≤ i ≤ |t|}
r3 = {δti1i2...i|t|−2j1j2ai1ai2 ...ai|t|−2

aj1aj2β
p
i1i2...ii|t|−2j1j2

→

δ(t+1)i1i2...i|t|−2j1j2ai1ai2 ...ai|t|−2
aj1aj2β

p−1
i1i2...i|t|−2j1j2

}

∪ {(δti1i2...i|t|−2j1j2ai1ai2 ...ai|t|−2
aj1aj2θ

p
i1i2...i|t|−2j1j2

)¬βij
→

δ(t+1)i1i2...i|t|−2j1j2ai1ai2 ...ai|t|−2
aj1aj2θ

p+1
i1i2...i|t|−2j1j2

}

∪ {(δti1i2...i|t|−2j1j2)¬ai1
ai2

...ai|t|−2
aj1

aj2
→ δ(t+1)i1i2...i|t|−2j1j2}

(1 ≤ t, p ≤ |D|, 1 ≤ i, j ≤ |t|)
r4 = {δ(|D|+1)i1i2...i|t|−2j1j2(θ

t
i1i2...i|t|−2j1j2

)¬βi1i2...i|t|−2
j1j2

→

θti1i2...i|t|−2j1j2
αi1i2...i|t|−2j1j2(αi1i2...i|t|−2j1j2 , go)}

∪ {δ(|D|+1)i1i2...i|t|−2j1j2β
t
i1i2...i|t|−2j1j2

θki1i2...i|t|−2j1j2
→ λ}

(1 ≤ i, j ≤ |t|, 1 ≤ t ≤ |D|)
r5 = {()¬αi1i2...i|t|

→ #|1 ≤ i ≤ |t|}

σ|t|+1 = (w|t|+1,0, P|t|+1), where:
w|t|+1,0 = λ

P|t|+1 = λ

The computational process of the proposed algorithm is described in the next
section.

4 Computational Process

As defined above, the database D has |D| records and |t| fields. And the frequent
itemsets with k support or higher are expected to be found. Because this is a
transactional database, the object aij is used to represent the j-th field of the
i-th record existing in the database. So ajp (1 ≤ j ≤ |D|, 1 ≤ p ≤ |t|) is put to
membrane 0. And this membrane puts all the input objects into membrane 1 to
membrane |t|, so each of these membranes has the original data of the database.

When membrane 1 gets the objects aij , the rules in it are activated. δij
are used to control the circulations. The first subscript i of δij represents the
i-th field of the database and the second one represents the j-th record of the
database. Membrane 1 has δ11, δ21, ..., δ|t|1 in the beginning. So the |t| sub-rules
of r1 run at the same time to count the supports of all |t| fields starting from
record 1.

The first sub-rule of r1 is taken as the example. The first subscript 1 of δ1j
represents this sub-rule counts the support of the first field of the database.
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The second subscript of δ1j is 1. So the first record is checked. If a11 exists, the
number of object β1 decreases 1 and the second subscript of δ11 increases 1 to
check the object a21 and so on. If ai1 does not exist, the number of object β1

does not change and second subscript j of object δ1j increases 1 to check a(i+1)1.
The number of object β1 is k. So when all the objects β1 are disappeared, the
number of ai1 is k. If the number of ai1 increases still this time, the number of
object θ1 increases. There are k θ1 in the beginning. So the number of θ1 can
show the support of ai1. Other |t| − 1 field are similar to the first field. So these
are not repeated here.

Rule r2 is activated when the second subscript of δij reaches |D|+1. If there is
no object βi at this time, the support count of the i-th field meets the threshold.
Item i is a frequent itemset of size 1. The object αi is generated to show that
and αi goes to membrane 2 for the next step of the computation and membrane
|t|+1 for storing the result of computation (membrane |t| + 1 is the membrane
which shows the result of the computation). By these rules, the set of itemsets
with frequent items of size 1 is generated. If there is no item that meets the
requirement, the computation stops.

Then membrane 2 gets the object αi. Firstly, the corresponding objects
δ1ij , β

k
ij , θ

k
ij are generated if αi, αj exist. The three subscripts of δtij represent

that the i-th and the j-th fields of the t-th record in the database. The meaning
of βij and θij are similar with βi and θi. Then the computation in membrane 2
is similar to that in membrane 1. Finally, the set of itemsets with frequent items
of size 2 will be generated. And so on until the set of itemsets with frequent
items of size |t| is generated by membrane |t|.

There are some objects α in the output membrane |t|+1 which subscript
shows the frequent items of the database.

5 Experiments and Analysis

In order to illustrate how the proposed algorithm runs, an illustrative example
is considered. Table 1 shows the transaction data of one branch office of All-
Electronics [1]. There are 9 transactions in this table and each transaction has
5 fields. Suppose the support count threshold is 2.

When computation stops, objects α1,α2,α3,α4,α5,α12,α13, α15,α23,α24,α25,
α123, α125 are in cell 6, which means {I1}{I2}{I3}{I4}{I5}{I1, I2}{I1, I3}
{I1, I5}{I2, I3}{I2, I4}{I2, I5}{I1, I2, I3}{I1, I2, I5} are all frequent itemsets
in this database.

6 Conclusions

With the advent of the era of big data, the traditional way of data processing
is more and more difficult to meet peoples requirement to efficiency. Profit from
the great parallelism, P system can decrease the time complexity of comput-
ing and improve the computational efficiency. Recent years, as a new biological
computing method, the theory of membrane computing has been adequately
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Table 1. The transaction data of one branch office of AllElectronics

TID items
T 100 I1,I2,I5
T 200 I2,I4
T 300 I2,I3
T 400 I1,I2,I4
T 500 I1,I3
T 600 I2,I3
T 700 I1,I3
T 800 I1,I2,I3,I5
T 900 I1,I2,I3

studied. Due to its great parallelism, it has been applied into many fields like
combinatorial problem, finite state problems and graph theory but not enough.
An improved frequent itemsets mining algorithm based on the Tissue-like P sys-
tem is constructed in this paper. This paper applies membrane computing into
the typical frequent itemsets mining algorithm Apriori algorithm enlarges the
research field of P system. This paper is focused in a first step on denotation of
the algorithm using a tissue P system while practical studies will follow. Addi-
tionally, there are many data mining methods and membrane computing can be
applied to a variety of other data mining methods.
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33. Peng H, Wang J, Pérez-Jiménez M J, et al. The framework of P systems applied
to solve optimal watermarking problem. Signal Processing, 2014, 101: 256-265.
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1 Introduction

Generalized communicating P systems (GCPSs, for short), introduced in [9],
are unconventional, Turing equivalent models of computation. Nevertheless, as
is shown in [1], a computation of a GCPS can be used as an interpreter of a
language in which complex compositions of web-services and/or applications (e.g.
workflows) are defined. This option indicates several requirements to be satisfied
by a workflow interpreter: one of them is reproducibility. As nondeterminism
is one of the main characteristic of GCPSs, we cannot be sure that the same
result can be reproduced from time to time if the computation is executed with
the same input configuration. Hence, the best the system is able to provide is
the trace of all the interactions among the cells during the computation noting
that which rule applications were produced the next configuration. As a rule
to be applied is selected non-deterministically from the multiple optional ones,
the traces can be used to calculate the probability of obtaining this subsequent
configuration.

2 Generalized Communicating P Systems

A generalized communicating P system (a GCPS, for short) is a variant of tissue-
like P systems [6, 7]. Roughly speaking, it corresponds to a hypergraph where
each node represents a cell and each edge is represented by a rule. Every node
contains a multiset of objects which can be communicated, that is, objects may
move between the cells according to communication rules (also called interaction
rules). The form of a communication rule is (a, i)(b, j)→ (a, k)(b, l) where a and
b are objects and i, j, k, l are labels identifying the source and the target cells.
Such a rule means that an object a from cell i and an object b from cell j move
synchronously to cell k and cell l, respectively. The system is embedded in an
environment (represented by cell 0) which may have certain types of objects in
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an infinite number of copies and certain types of objects only in a finite number
of copies. The GCPS and the environment interact by using the communication
(interaction) rules given above, with the restriction that at every computation
step only a finite number of objects may enter any cell from the environment.
This is due to the fact that the set of communication rules is defined in such
way that if two objects from the environment are moved to some other cell or
cells, then at least one of them must not appear in the environment in an infinite
number of copies. We note that although a GCPS realizes a graph structure, the
cells are defined implicitly, since the system is given as a set of communication
rules over an alphabet. For the formal details of the notion the reader is referred
to [9].

The communication rules, by default, are applied in the maximally paral-
lel manner, possibly implying changes in the configuration of the GCPS, i.e.,
changing the multisets representing the contents of the cells. A computation in
a GCPS is a sequence of configurations directly following each other. If this se-
quence is finite, then we speak of a finite computation. A computation is called
halting if starting from the initial configuration it ends in a configuration to
which no communication rule can be applied. The result of the computation is
the number of objects found in a distinguished cell, e.g., in the output cell in
the halting configuration. Obviously, any halting computation is finite. GCPSs
compute numbers (nonnegative integers), but they can be used for computing
vectors of such numbers as well.

For more information on generalized communicating P systems consult [9, 4,
3, 5, 2] and [7].

3 Traces of Finite Computations in GCPSs

As it can easily be seen, each finite computation of a GCPS is realized by an
ordered list of configurations which can be considered as a list of snapshots that
records the contents of the cells in each step. Nevertheless, this list does not
provide information on which types of rules and in how many copies they were
applied in each step, thus the computation process cannot be reproduced. Thus,
the following questions are open: Is it decidable whether or not a computation of
length k in a GCPS is deterministic at the level of the applied rules, e.g., starting
from a certain configuration there exists only one computation of length k or
not, the multiset of communication rules applied in each step is the same or not,
and, starting from the same configuration how many computations, different
according to the multiset of applied rules, lead to the same result.

To provide more information on the process of computation, we add further
information to the description by configuration sequences.

Suppose that the GCPS Π has l communication rules. A trace of the ith
computation step of Π is a vector of 2l components, where the first l components
specify the applicable communication rules in a given configuration: if the ith
rule is applicable, then ith component of the vector is 1, otherwise it is 0. The
other components, from l + 1 to 2l, are nonnegative numbers, indicating how
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many copies of the given rule are performed in the given step. Notice that for a
given configuration of Π, all traces resulting in a subsequent configuration can
be computed.

By a trace matrix of Π of size s, we mean a matrix of s rows where each
row is a trace of Π and for each j, 1 ≤ j ≤ s − 1, the j + 1th row is the
trace of a computation step that resulted from the trace of the jth step. The
first row represents a trace of a computation step starting from the initial (first)
configuration of this finite computation. In this way, we obtain finite sequences
of matrices which describe the whole process of computations of length l, l ≥ 1.

These representations make possible to study the functioning of GCPSs from
several points of view. For example, since a GCPS can be considered as an
application using its initial configuration as inputs and counts the result in the
output cell, the comparison of trace matrices of different computations provide
information on how many different computations provide the same result for the
same input. Furthermore, which of them requires the minimal number of steps of
computation? Some other question for further investigation is how many different
computations are possible from a given configuration? Finally, robustness of a
given GCPS with respect to change of the initial configuration would also be of
interest, which could serve for classifying generalized communicating P systems.

Our work in progress deals with these kinds of questions. Our research con-
centrates on studying GCPSs computing Parikh vectors of D0L and DT0L se-
quences. D0L systems (deterministic interactionless Lindenmayer systems) are
pure contex-free grammars where the rule set has exactly one rule for each sym-
bol in the system, and by performing a direct derivation step all symbols in the
word in generation are simultaneously rewritten (for details concerning these
notions and their properties consult [8]). This implies that having a word w of
a D0L sequence (a word obtained by performing a finite sequence of derivation
steps from an initial word), the (only one) multiset of rules to be applied to ob-
tain the next word in the sequence and the Parikh vector of the new word can be
computed. We study the trace matrices of the simulating GCPSs and compare
the results to the corresponding results obtained in the theory of Lindenmayer
systems.
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Extended Abstract

1 Introduction

In the following, we continue the investigations concerning the relationship of
the “chemical calculus” of Banâtre and Le Métayer [5, 3] and membrane systems.
In [6, 1] we have studied the possibilities of describing membrane system compu-
tations with chemical terms and their reduction sequences. Here we present an
attempt to attack the problem from the “opposite direction”, that is, to describe
chemical terms and their reduction sequences by membrane system computa-
tions. Our chosen model is a variant of P systems with active membranes as
presented in papers, such as [2].

The following brief presentation of the chemical calculus is based on [3] and
[4]. Like Gamma programming, the chemical calculus is also inspired by the
chemical metaphor: data are represented by γ-terms, which are called molecules,
and reactions between them are represented by rewrite rules.

The syntactical elements are molecules, reaction conditions, and patterns,
denoted by M, C and P , respectively. The special type of molecule

γ(P )[C].M

is called a γ-abstraction with pattern P , reaction condition C, result M . It
encodes a rewriting rule: when the pattern P is respected and the condition C
is met, a substituted variant of M is created as a result.

The way patterns are matched is defined by the notion of substitution, a
mapping φ from the set of variables to the set of molecules, but instead of giving
the formal details, we present the idea through an example below.

A (γ-)redex is a term of the form (γ(P )[C].M,N). The reaction rule (γ-rule)
is defined as γ(P )[C].M,N → φM, where φ assigns values to variables in such a
way that φ(C) reduces to true.

As an example, consider the γ-term (γ(x, y)[x = y].x, 1, 2, 3, 1, 4) where
(x, y) is a pattern, and x = y is a reaction condition. In order for the condition
to evaluate to true, the pattern needs to be matched so that φ(x) = φ(y), and
then the result is (γ(x, y)[x = y].x, 1, 2, 3, 1, 4) → (1, 2, 3, 4).
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During the translation we are concerned with a simplified version of the γ-
calculus: we consider only abstractions where the conditional part is constantly
true. This simplification has no effect on the computational strength of the cal-
culus.

2 P Systems Associated to γ-terms

Let M be a γ-calculus term. We define the P system associated with M as

Π = (O,µ,w1, . . . , wn, H,R1, . . . , Rn, ρ1, . . . , ρn),

a P system with active mebranes and the usual ingredients, using membrane
dissolution, division, and so called subordination rules. We also use promoters
and inhibitors assigned to rules. Moreover, besides the usual parities we introduce
new values ? and ?? for unknown parities. H = V ar ∪ {σ, ρ, ρ1, ρ2} is the set of
labels, where V ar is the set of variables occurring in M and Atom is the set of
atomic objects in M different from variables.

Intuitively, solutions are coded by the label σ, patterns and abstractions are
coded as pairs, the first elements of which are the patterns labelled by ρ1 and
the second ones are the bodies of the abstractions with labels ρ2. The variables
occurring in patterns also appear as labels. Labels in the pattern part of an
abstraction get an additional subscript p. The membrane implicitly containing
the whole structure is the skin membrane. For example,

γ〈x, y〉.(x, y, z) [[[[]xp
, []yp]σp

]ρ1 , [[]x, []y, []z]ρ2]ρ.

We simulate one step of reduction in the γ-calculus with possible several steps
of computation of the membrane system. The process is governed by control
elements, most of the construction will follow the general pattern below:

control, condition→ result > control → newcontrol,

where condition is usually a membrane or atom or a multiset of them and
newcontrol triggers some new operations. First of all, we are going to find an
abstraction for a possible redex, nondeterministically choose its arguments and
then start the matching process. When two solutions matched inertness of the
solution not in the pattern must be ensured. This compels us to embed a process
for checking for inertness in the course of the reduction. When everything was
successfully matched we begin substitutions for the variables in the non-pattern
part of the abstraction. This highly leans on the rule of subordination.

To start the computation of the membrane system, we have a control element
?start, which immediately creates the control element ?copy. The element ?copy
produces a copy of the original system and is rewritten for the new control
element ?findredex:

[?copy]0s → [?findredex]0s, []
0
s.
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The control element ?findredex finds an abstraction nondeterministically: it
can permeate solutions so as to find redexes in subterms also. The new control
element ?findarguments collects arguments by subordination in order to pre-
pare for the reduction. Then reduction continues with the matching process by
calling the new control element ?match. As an illustration we give the process
in detail.

?findredex, []0σ → [?findredex]0σ,

?findredex, []0ρ → [?findarguments]+ρ

Abstractions with parity + can accept other membranes in subordinations.

[]+ρ , []
0
α → [[]0α]

+
ρ

The element ?findarguments can intervene to prevent an abstraction from
accepting more arguments:

[?findarguments→ ?findarguments]+ρ ,

[?findarguments]+ρ → [?match]0ρ.

The element ?match removes the membrane of the pattern part of the abstrac-
tion labelled by ρ1, creates a new control element ?correct, which is in charge
for the correct termination of the matching process, then the matching process
begins. A pattern variable can be matched to every type of term, while matching
a solution with a solution needs a check for the inertness of the argument.

[]0σp
, []0σ → []0σp

, [?startinert]?σ,

[]xp
, []aα → [[]aα]

+
xp
, where α ∈ V ar ∪ {σ, ρ}.

If the solution with parity ? proves to be inert, then ?match removes the
membranes with labels σp and the one with label σ and parity +, and the
matching process can be continued inside the solutions. Otherwise, when the
solution argument proves to be non-inert, then the whole reduction step fails,
which manifests itself by clearing the duplicate of the skin membrane with parity
? and starting the whole process again with the copy of the whole membrane
system reserved before.

When the matching terminates properly, only membranes with labels of pat-
tern variables and a membrane with label ρ2 should remain in the examined
abstraction. In other words, every membrane with label σ should disappear. The
control element ?correct sees to it. If this is not the case, again a ?matchfails
process is called, otherwise we still have to check whether the matching assigns to
equal variables equal membrane subsystems. That is, if [pM1q]

+
xp

and [pM2q]
+
xp

are elements obtained by virtue of the matching process, then pM1q = pM2q,
where pMiq is the membrane encoding of the term Mi. The control element
?equal is responsible for this investigation. The basic idea is: we order the vari-
ables occurring in our membrane system and we accomplish this equality check
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for the variables separately, treating first the variable preceding the others in
the ordering. Assuming the variable in question is x and we have n copies of
membranes with label xp, say [pM1q]

+
xp
, . . ., [pMnq]

+
xp

. We delete one outer-
most membrane at a time with label α in one of the membranes labelled xp and
then delete one outermost membrane with the same label α in all other mem-
branes labelled xp. The process terminates with empty membranes if and only if
pM1q, . . ., pMnq were the same membrane subsystems. In every other case the
element ?matchfails is created.

When we reach this point, either the reduction is failed or we have a set of
substitutions labelled with pattern variables. The only task remaining is to ac-
complish the substitution in the membrane subsystem labelled by ρ2 contained
in the same abstraction. This is a straightforward task implemented with sub-
sequent applications of the subordination rule. In the meantime, by dissolution,
we have to make sure that we have an ample supply of elements labelled with
pattern variables, which convey the representation of the substitution, and ev-
ery variable of the membrane subsystem encoding the non-pattern part of the
abstraction is substituted for. This can be checked again by a straightforward
traversal of the membrane system labelled ρ2.

What is left is the process of checking inertness of a solution. A solution 〈N〉
is inert, if there are no redexes in N only inside of other solutions. Thus checking
for inertness in a membrane [pNq]aσ involves examining every abstraction and
every possible set of arguments so that they do not form a redex of the γ-calculus.
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Pázmány Péter sétány 1/c, 1117 Budapest, Hungary
csuhaj@inf.elte.hu

Recently, there has been a growing interest in unconventional Turing equiva-
lent computing devices and in computational models which ”go beyond” Turing,
i.e., which are able to compute more than recursively enumerable sets of strings
or numbers. In membrane computing, we can find examples for both types of
such constructs.

1 Red-Green Turing Machines

Red-green Turing machines, introduced in [9], are computing devices with com-
putational power exceeding that of the standard Turing machines, since they
recognize exactly the Σ2-sets of the Arithmetical Hierarchy. These machines are
deterministic and their state sets are divided into two disjoint sets, called the
set of red states and the set of green states. They work on finite inputs with
the recognition criterion on infinite runs that no red state is visited infinitely
often and one or more green states are visited infinitely often. A change of the
”color”, i.e., a change from a green state to a red state or reversely is called
a mind change. In [9], it was shown that any recursively enumerable language
can be recognized by a red-green Turing machine with one mind change and if
more than one mind changes may take place, then they are able to recognize the
complement of any recursively enumerable language.

In [1], in the analogy of the concept of red-green Turing machines red-green
counter machines (red-green register machines) were introduced and examined.

It was shown that the computations of a red-green Turing machine TM can
be simulated by a red–green register machine RM with two registers and with
string input in such a way that during the simulation of a transition of TM
leading from a state p with color c to a state p′ with color c′ the simulating
register machine uses instructions with labels (states) of color c and only in the
last step of the simulation changes to a label (state) of color c′. Furthermore, the
computations of a red–green register machine RM with an arbitrary number of
registers and with string input can be simulated by a red–green Turing machine
TM in such a way that during the simulation of a computation step of RM
leading from an instruction with label (state) p with color c to an instruction
with label (state) p′ with color c′ the simulating Turing machine stays in states
of color c and only in the last step of the simulation changes to a state of color
c′.
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In [1] the notions of a red-green P automaton and its variants, as counterparts
of red-green Turing machines in membrane computing, have also been defined
and examined, demonstrating that these variants of P systems ”go beyond”
Turing.

2 P Colonies

P colonies [8] which combine features of tissue-like P systems and distributed
systems of formal grammars called colonies [7] are examples for non-standard
Turing equivalent computational models. A P colony consists of a finite number
of agents (also called cells) and an environment. In the basic model, every agent
is represented by a finite multiset of objects (the current state of the agent)
and a finite number of programs. Each program consists of a finite number of
rules for processing the objects of the agent. A rule of the agent is either an
evolution rule (it changes an object of the agent to some other object) or a
communication rule (it exchanges an object of the agent and an object of the
environment). The environment is represented by a multiset of objects as well;
at the beginning it consists of an infinite number of copies of a special object, e,
called the environmental object.

P colonies work with direct changes of their configurations, also called com-
putational steps. At each computational step every agent attempts to use one
of its programs. The rules of the program have to be applied in parallel. If there
is at least one applicable program, then the agent non-deterministically chooses
one of them. At every step of the computation, the maximal possible number of
agents has to perform a program and at every computational step each agent is
represented by the same number of objects as at the beginning. This number is
called the capacity of the agent. In the standard case, agents of the P colony are
with capacity two. By applying programs, the P colony passes from one config-
uration to some other configuration. A sequence of direct configuration changes
starting from the initial configuration is called a computation; if the P colony
has no applicable program to the obtained configuration, then the computation
is called halting. The result of the computation is the number of a distinguished
object, f (called the final object), that can be found in the environment at halt-
ing. P colonies and their variants have been examined in detail during the years,
it has been shown that they are computationally complete computing devices
even with very restricted size parameters and programs with restricted forms
(see, for example, [6]).

3 APCol Systems

According to the generic model of P colonies, the environment is represented by
a multiset of objects. In [2] and [3] a new variant of P colonies was introduced,
called an APCol system, where the environment is given as a string. The model
provides the options of erasing and inserting symbols (even contexts) into and
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from the string by communication rules; the environmental object (the basic
object), e, plays the role of the empty word.

Formally, an APCol system is a construct Π = (O, e,A1, . . . , An), n ≥ 1,
where O is an alphabet (the alphabet of objects), e ∈ O (the basic object) and
Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ee, Pi, Fi), where ee is
the multiset of objects describing the initial state (initial content) of the agent,
and Pi = {pi,1, . . . , pi,ki}, ki ≥ 1, is a finite set of programs associated with the
agent, where each program is a pair of rules. Each rule is in one of the following
forms: a → b where a, b ∈ O (an evolution rule) and c ↔ d where c, d ∈ O (a
communication rule). Fi ⊆ O∗ is a finite set of multisets with cardinality two,
called the set of final states (final contents) of agent Ai.

During the work of the APCol system, the agents perform programs. If an
evolution rule a → b is applied, then object a in the state of the agent is rewritten
to the object b. If a communication rule c ↔ d is performed, then the object c
inside the agent and a symbol d in the string are exchanged, the agent rewrites
symbol d to symbol c in the string representing the environment. If c = e, then
the agent erases d from the input string and if d = e, symbol c is inserted
into the string. Since both rules in a program can be communication rules, an
agent can work with two objects in the string representing the environment in
the same computational step. In the case of a program 〈a↔ b; c↔ d〉, where
a, b, c, d ∈ (O \ {e}∗), a substring bd of the environment is replaced by string ac.
The order of the rules in the program is significant, that is, in one computational
step the agent can act only at one place and the change of the string depends
both on the order of the rules in the program and on the interacting objects.

The program is said to be restricted if it consists of one rewriting and one
communication rule. The APCol system is restricted if all of its agents have only
restricted programs.

At the beginning of the work of the APCol system, the environment is given
by a string ω ∈ (O \ {e})∗ of objects. This string represents the initial state
of the environment. Thus, an initial configuration of the APCol system is an
(n + 1)-tuple c = (ω; ee, . . . , ee) where ω is the initial state of the environment
and multiset ee is initial state of agent i, 1 ≤ i ≤ n.

A configuration of an APCol system Π is given by (w;w1, . . . , wn), where
wi, 1 ≤ i ≤ n, is a multiset of objects with two elements representing the state
of the i-th agent and w ∈ (O − {e})∗ is the environment to be processed.

A configuration c = (w;w1, . . . , wn) of Π is directly changed to configuration
c′ = (w′;w′1, . . . , w

′
n) if c′ is obtained from c in such way that in configuration c

a maximal number of agents performs one of its own programs simultaneously
and the resulting configuration is c′. The direct change of a configuration is also
called a computational step.

A sequence of configurations starting from the initial configuration is called
a computation. A configuration is halting if no agent of the APCol system has
any applicable program.

The result of a computation depends on the working mode of the APCol
system. In the case of the accepting mode, the string ω (the initial state of the
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environment) is accepted by the APCol system Π if there exists a computation
by Π such that it starts in the initial configuration (ω; ee, . . . , ee) and the com-
putation ends by halting in the configuration (ε;w1, . . . , wn), where wi ∈ Fi for
at least one wi, 1 ≤ i ≤ n. The language accepted by Π is the set of all (environ-
mental) words over (O \{e}) which are accepted by Π. The other working mode
of an APCol system is the generating mode. The string wF is generated by Π
if there exists a computation starting in an initial configuration (ε; ee, . . . , ee)
and the computation ends by halting in configuration (wF ;w1, . . . , wn), where
wi ∈ Fi for at least one wi, 1 ≤ i ≤ n. The language generated by Π is the set
of all (environmental) words over (O \ {e}) which are generated by Π.

In [2] it was shown that any recursively enumerable language can be obtained
as a projection of a language of an APCol system with two agents working in
the accepting mode. In [3] it was proved that any recursively set of numbers
can be computed by a restricted APCol system with two agents working in the
generating mode.

4 Extensions of P Colonies

We develop the concept of P colonies in two directions. First, we propose the
concept of P colonies with teams ((APCol systems with teams), where the team
is a finite number of agents of the P colony (APCol system). These teams can be
so-called prescribed teams (given together with the components of the P colony)
or so-called free teams where only the size of the teams, i.e., number of agents
in the team is given in advance. The notion is inspired by the concept of team
grammar systems (see [5]). P colonies (APCol systems) with prescribed or with
free teams function in the following manner: at any computation step only one
team is allowed to work (only one team is active) and all of its components should
perform a program in parallel. P colonies (APCol systems) with prescribed teams
are computationally complete computing devices.

In the analogy of red-green Turing machines (red-green register machines),
we can introduce red-green APCol systems. These constructs are APCol systems
with teams where the set of teams is divided into two disjoint subsets, the set of
red teams and the set of green teams. A red-green APCol system recognizes a
string if during infinite runs on the string no red team is active infinitely often and
one or more green teams are active infinitely often. The APCol system performs
a mind change if an action of a red team is followed by an action of a green team
and vice versa. The proofs of the computational completeness of APCol systems
in [2] and in [3] are based on simulations of counter machines (register machines)
with APCol systems. Modifying the constructions accordingly, it can be shown
that the transitions of a red-green counter (register) machines can be simulated
by action sequences of teams of red-green APCol systems, furthermore, during
the simulating action sequence of the red-green APCol system as many mind
changes take place as the simulated transition of the red-green counter (register)
machine means. Thus, we obtain that the computational power of red-green
APCol systems ”goes beyond” Turing.
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We plan further investigations in these topics.
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Abstract. A biological network modeled by a multiset grammar may
be investigated from a dynamical viewpoint by a recurrence system. An
interesting connection among computation by a multiset grammar, linear
algebra, and recurrent dynamics is here discussed along with questions
of minimality and covering.

Biochemical networks (usually having much more interactions/edges than
substances/nodes) may be modeled by a set of (thousands of) rewriting rules
(see, for example [11]). A computationally efficient study of such a model could
start from a reduction of the number of rules to a minimal set which guarantees
the dynamical properties of interest, for all variables involved in the system.
Similarly, in recent literature of synthetic biology, synthetic genomes are gener-
ated by suitable assemblying of a minimal set of genes necessary to keep the cell
working, or performing a given specific function. For instance, the genome of My-
coplasma mycoides was replaced with a synthetic genome in 2010 [5], while more
complex organisms (of yeast species) have been synthetically generated more re-
cently [1, 6]. In these cases, original genomic sequences are “edited”, namely by
specific deletion of “dispensable” DNA sequences and by replacement of partic-
ular regions by others performing the same task. Deletion of the “non-essential
genes” allows the genome size to be reduced: a feature designed to determine
the smallest cohorts of genes required to perform a given function (or necessary
for survival under a particular growth condition).

Motivated by the above approaches to model biological dynamics and func-
tions, here we would like to search for the smallest cohorts of rewriting rules
required to exhibit the dynamics of a given multiset grammar. In this extended
abstract a discussion is proposed, to define a minimal grammar, that is, having a
minimal set of rules, which guarantees a given systemic dynamical pattern (e.g.,
periodic, oscillating, increasing, decreasing . . .). Observations in the vectorial
spaces where substances and rules may be seen allow us to consider also some
covering issues.

This is a preliminary work ispired by problems opened up in [3], in the context
of metabolic computing [7]. Moreover, according to a current trend of membrane
computing, P systems are investigated having integer vectors as states (where
object multiplicities do not need to be positive numbers), which means that
substances are present in arbitrary quantity.

The intent to employ multiset processing as a framework to study real biolog-
ical systems is vivid in literature, along with variants of P systems enriched with
other features, often inspired by biology [4], and having a specific rule application
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strategy different from the traditional nondeterministic maximal parallelism [2].
Models for metabolism as MP systems [8] may be mentioned as a very applica-
tive trend of membrane computing. They are mono-membrane multiset rewriting
grammars, where rules are regulated by specific state functions.

1 A minimization problem

Deterministic evolution of macrostates of an abstract container of objects, with
integer multiplicities, transformed by given rewriting rules, may be naturally
modeled by a multiset grammar, where all rules are applied in parallel at each
step. An application strategy is established for the number of times that each
rule is applied. Indeed, on multisets with integer multiplicities rules have no
conflict to be applied, as in some traditional P models, where an environment
was assumed to provide our system with unlimited resourses. Our interest is
focused on the dynamics of the system, that is, on the integer vectors (related
to the objects) variation.

In other terms, we consider a one-membrane P system with integer multi-
plicities, having numerical vectors emerging as a sequence of states computed by
transitions, where rules are applied according to a given systemic strategy.

Example 1. As a toy example, the reactions r1 : ab → aa, r2 : bcc → a, r3 :
abc → bb may be all applied in one transition, each of them once, to modify
an arbitrary (initial) state (α, β, γ), which is an integer vector. The transition is

computed by means of the stoichiometric matrixM =

 1 1 −1
−1 −1 1

0 −2 −1

, according

to the equationM× (1, 1, 1) + (α, β, γ) = (α+ 1, β − 1, γ − 3), where × denotes
the ordinary matrix product.

In general, given a multiset grammar over the alphabet X = {x1, x2, . . . , xn},
with rules R = {r1, r2, . . . , rm}, with m ≥ n, if (in one transition) we apply the
first rule k1 times, the second k2 times, and so on, then the following recurrent
dynamics describes such a grammar computation: X[i + 1] = k1v1 + k2v2 +
kmvm+X[i], where v1, v2, . . . , vm are the m columns of the stochiometric matrix
M, U = (k1, k2, . . . , km) ∈ Nm, i the computational step, and X[i] the state of
the system (n-dimensional integer vector related to the symbols of the alphabet).
Each n-dimensional column vi reports the single effect of one application of the
rule ri on the variation of the substances, while ki represents the number of
times the rule ri is applied.

In conclusion, the dynamics of the system is given by a recurrence equation,
which updates the current state X[i] by adding the vectorM×U , given by the
specific linear combination k1v1 + k2v2 + kmvm of the m vectors of Zn corre-
sponding to the rules. Our goal is to minimize the number of rules in the system,
by keeping unaltered such a state variation (i.e., the dynamics).

If the vector U is constant, the dynamics of X is linear, that is, each variable
increases or decreases monotonically. In order to have more complex curves, we
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need a vector U which depends on the state, as it is usually the case for multiset
grammars in both traditional P systems (where the number of times to apply
rules depends on the current multiset) and MP systems, where U is given by
state functions computed by data-driven regression [9]. It has been shown [10,
7] that very complex functions may be computed by such a discrete model of
computation.

Let us first discuss the minimality question under the assumption of U con-
stant (m-dimensional vector of positive natural numbers) and linear dynamics
for the variables. To be able to reduce the number of rules (i.e., vectors vi,
i = 1, . . . ,m) of course we need to change the given U into another positive
vector U ′ with a minor number of components.

Then, our open question has been now reduced to a problem of linear algebra:
which is the minimum number p of rules, with p ≤ m, such that: kj1vj1 +kj2vj2 +
. . . , kjpvjp = k1v1 + k2v2 . . .+ kmvm and ji ∈ {1, 2, . . . ,m} for i ∈ {1, 2, . . . , p}?

In the toy system above, we have a state variation of (1,−1,−3), with U =
(1, 1, 1), and by basic algebra one realizes that 4v1 + 3v3 = v1 + v2 + v3. The
minimal set of rules to get our linear dynamics is {r1, r3}. In fact, the cardinality
of such a set cannot be further riduced, as no column of M is a multiple of
(1,−1,−3).

A conjecture here is that the minimum number p is greater or equal to the
number of linearly independent columns ofM, that is rankM ≤ p ≤ m. A more
general conjecture claims that this property is true even in the case of U being
a positive state function (rather than a constant vector). In this general case,
we have a possible variation of p at each computational step, and we look for an
interval of possible values for p, which would be included in [rankM,m].

2 A covering issue

Looking at a multiset grammar as a couple of sets, one in Zn (substances x) and
the other in Zm (associated to rules r of the type αr → βr), recalls the notion
of duality between vectorial spaces of functions, since substances and rewriting
rules are clearly connected. For instance, any substance x may be associated to
the set of rules having x as a reactant (i.e., occurring in αr), denoted by A(x),
which is a singleton {r} iff the substance x is a reactant only for the rule r.

Definition 1. A set S ⊆ R is called covering set if ∀x ∈ X ∃r ∈ R(x) such that
r ∈ S.

In other terms, S is a covering set iff ∀x ∈ X A(x) ∩ S 6= ∅. If both the
sets of substances and rules are not empty, the cardinality of a covering set is at
least 1 and at most m (R is obviously a covering set).

A minimal set of rules (in the sense defined in previous section) needs to
have such a covering property, which is necessary for the system to compute a
dynamics for each substance. Viceversa of couse is not true: in our toy example,
{r3} is a covering but is not a minimal set.
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Any set of n linearly independent rules is a covering (as each substance is
involved by at least one rule) [3]. If our conjecture is correct, then a covering set
is included in a minimal set.

If we add a rule to a covering set we still have a covering set (by definition).
In this context, if we have to choose between the covering sets {xyz → a} and
{xy → b, z → c}, then we prefer the first choice.

Let us recall a notion related to context sensitive rules that is employed by
the algorithm presented in the following.

Definition 2. Given X and r ∈ R, we call radius of r with respect to X the

number η
(X)
r of distinct symbols of X present in αr.

We notice that a rule r has only one occurrence in the sets A(x) with x ∈ X
iff η

(X)
r = 1, and in general it occurs as many times as the number of distinct

symbols occurring in αr. Hence, in this context, the radius with respect to X
measures the multiplicity of a rule in the multiset ∪x∈XR(x).

The basic idea of the following algorithm finding covering sets (in worst-case
polynomial time) is to pick up the most frequent rule (i.e., having the maximal
number of occurrences) in the sets A(x) with x ∈ X0 (initially X0 = X), and
then to update the set X0 by deleting all the substances which have been covered
with that rule. It is quite straightforward that by iterating this process until X0

is empty, one gets a covering set S, having a number of elements which belongs
to {1, 2, . . . , n}.

Input: X, R from a given MP system.

Let L, ξ, lr, ηr, with r ∈ R, be integers initialized to zero.

X0 := X; W := ∅; S := ∅;

while X0 6= ∅ do

begin

1. For each x ∈ X0, compute R(x);

2. For each rule r ∈ ∪x∈X0
R(x), compute its radius ηr := η

(X0)
r , and

let ξ := maxr∈∪x∈X0
R(x){ηr};

3. W := {r | ηr = ξ};
4. For each rule r ∈W, compute lr = | ∪r∈R(x),x∈X0

R(x)|, and let L =
maxr∈W {lr}.

5. Choose one r ∈W such that lr = L, and

(a) S := S ∪ {r};
(b) X0 := X0\{x | r ∈ R(x)};

end

Output: S.
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In words, the algorithm keeps the set X0 updated with all the substances
which still need to be covered (initially it is equal to X, while in each cycle at
least one of its element is deleted). Referring to the current set of substances
(step 1), the most frequent rules are chosen and settled down in the work-set W
(steps 2 and 3).

Among the rules of W , those related to a maximum number of other rules
are selected (by step 4), in order to avoid useless computation in the next steps
(also intuitively: since we want to take a minimal number of rules, we choose
those which eliminate most of the other candidates). This step only exists to
limit computational steps.

One out of the rules which are most frequent and which eliminate most of
the other rules is finally picked up (step 5): it is added to the set S, by 5(a),
and the set X0 is updated accordingly to this choice, by 5(b). That is, all the
substances covered by the rule just chosen are deleted, as they do not need to
be covered anymore.

Remark: Whatever rule we choose at step 5, the same number of substances
is deleted in X0, as the choice is performed among rules of maximal radius.
Therefore, both the number of steps of the algorithm and the cardinality of the
output set are not affected by the nondeterministic choice at step 5.

Proof. (Algorithm correctness). The output set S is a covering set by construc-
tion, as it contains rules which exhausted the set X (i.e., which covered all the
substances of X). For each rule which is added in S, at the end of each cycle
(step 5(a)), at least one substance is deleted in X0 (step 5(b)) which initially
has cardinality n. Then, X0 is empty after k ≤ n cycles, and the output set S
has cardinality k. ut

This algorithm computes only one of the covering sets, but others with the same
cardinality can be computed, actually as many as the product of the number of
rules having maximum radius and maximum L after each cycle (that is, after
each updating of X0). In other words, there are as many covering sets with the
cardinality of S as the number of possible combinations of choices the algorithm
performs at step 5.

We point out that the algorithm finds a covering set of cardinality n only if
the system has n rules with radius one and acting on different substances.
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Abstract. A scheme for fault classification of transmission lines based on rFRSN
P systems is presented. The fuzzy production rules of fault classification are first
described. Then the fault classification model based on rFRSN P systems is es-
tablished to identify fault types. Finally, the introduced method is verified to be
effective with high classification accuracy and is not affected by various fault
conditions, such as fault inception angles, fault resistance, and fault locations,
etc.
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1 Introduction

Fault classification is the most important task involved in transmission line protection,
which must be accomplished in a way which is as fast and accurate as possible to isolate
the system from a fault point and recover it after a fault occurs [1–3]. Of various fault
classification methods, a fuzzy reasoning spiking neural P system is a promising choice
[4–10]. This is also considered as a promising practical use of spiking neural P systems
[11–14], even of P systems in general[15, 16]. In this paper, a novel fault classification
scheme based on fuzzy reasoning spiking neural P systems with real numbers (rFRSN
P systems) , which are applied to build a fault classification model to identify fault types
on the basis of fault features, is presented.

2 Fault Classification Models Based on rFRSN P Systems

2.1 Fuzzy Production Rules of Fault Classification

When a fault occurs, the fault component current of the fault phase changes signifi-
cantly, while the fault component current of the sound phase changes little. And in case
of phase to phase faults and three phase fault, the zero sequence current is theoretically
zero, while in case of ground faults, the zero sequence current is significant than that
under normal conditions, and the fault component zero-sequence current of phase to
phase fault is very small. It should be noted that the large and small above-mentioned
are fuzzy knowledge which is on behalf of size of transient feature value. Therefore,
the fuzzy production rules of fault classification are described as follows. In addition,
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let sa, sb, sc and s0 stand for phase a, b, c and 0, respectively

R1:IF (sa is large) AND (sb is small) AND (sc is small) AND (s0 is large) THEN Ag

R2:IF (sa is small) AND (sb is large) AND (sc is small) AND (s0 is large) THEN Bg

R3:IF (sa is small) AND (sb is small) AND (sc is large) AND (s0 is large) THEN Cg

R4:IF (sa is large) AND (sb is large) AND (sc is small) AND (s0 is large) THENABg

R5:IF (sa is small) AND (sb is large) AND (sc is large) AND (s0 is large) THENBCg

R6:IF (sa is large) AND (sb is small) AND (sc is large) AND (s0 is large) THEN CAg

R7:IF (sa is large) AND (sb is large) AND (sc is small) AND (s0 is small) THEN AB
R8:IF (sa is small) AND (sb is large) AND (sc is large) AND (s0 is small) THEN BC
R9:IF (sa is large) AND (sb is small) AND (sc is large) AND (s0 is small) THEN CA
R10:IF (sa is large) AND (sb is large) AND (sc is large) AND (s0 is small) THENABC

2.2 Fault Classification Models

On the basis of fuzzy production rules, a fault classification model based on rFRSN P
systems is built according to the above mentioned fuzzy production rules, where Al,
As, Bl, Bs, Cl, Cs, 0l and 0s are on behalf of propositions “sa is large”, “sa is small”,
“sb is large”, “sb is small”, “sc is large”, “sc is small”, “s0 is large”, “s0 is small”,
respectively. The corresponding rFRSN P system for fault classification is defined as
follows:

Π1 = (O, σ1, σ2, . . . , σ28, syn, in, out)

where
1) O={a} is the singleton alphabet ({a} is called spike);
2) σ1, σ2, . . . , σ18 are proposition neurons corresponding to the propositions with

fuzzy truth values θ1, θ2, . . . , θ18;
3) σ19, σ20, σ28 are and rule neurons;
4) syn = {(1, 19) , (1, 22), (1, 23), (1, 25), (1, 26), (1, 28), (2, 20), (2, 21), (2, 24),

(2, 27), (3, 20), (3, 22), (3, 24), (3, 25), (3, 27), (3, 28), (4, 19), (4, 21), (4, 23), (4, 26),
(5, 21), (5, 23), (5, 24), (5, 26), (5, 27), (5, 28), (6, 19), (6, 20), (6, 22), (6, 25), (7, 19),
(7, 20), (7, 21), (7, 22), (7, 23), (7, 24), (8, 25), (8, 26), (8, 27), (8, 28), (19, 9), (20, 10),
(21, 11), (22, 12), (23, 13), (24, 14), (25, 15), (26, 16), (27, 17), (28, 18)};

5) in={σ1, σ2, . . . , σ8}, out={σ9, σ10, . . . , σ18}.

3 Simulation and Robustness Analysis

The considered two-machine three-phase power system is simulated on PSCAD/EMTDC
for producing fault samples to test the performance of our rFRSN P System-based fault
classifier. The Bergeron line model of PSCAD/EMTDC is considered for transmission
line. The proposed fault classification method only uses the current signals of three
phases. The sampling frequency is set to 50kHz.

To test the effectiveness of different transmission line parameters on the accuracy
of the presented classification method, two transmission lines with different parameters
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have been simulated to produce 100 test samples. The classification results show that
the accuracy is 100% even when the transmission line is changed. In other words, the
presented method in this paper has advantages in robustness to line parameters, and is
suitable for other transmission lines.

4 Conclusions

In this paper, rFRSN P systems are applied to classify fault types for power system
transmission line. A reasoning algorithm for the rFRSN P systems is used for fault
reasoning to obtain confidence levels of different fault types. Simulation tests show that
the presented method is effective in fault classification under various fault inception
angles, various fault resistance, various fault locations.
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Extended Abstract

1 Introduction

P colonies are variants of very simple membrane systems, similar to so-called
colonies of simple grammars, see [7]. These are collections of very simple genera-
tive grammars, but as systems, they are able to generate complicated languages.

Similarly to the grammar systems variant, P colonies also consist of a collec-
tion of very simple computing agents which interact in a shared environment,
see [8, 9]. The environment and the computing agents are both described by mul-
tisets of objects which are processed by the colony members using rules which
enable the transformation of the objects and the exchange of objects between
the colony members and the environment. The rules are grouped into programs,
which execute the rules they contain in parallel. A computation consists of a
sequence of computational steps during which the colony members execute their
programs in parallel, until the system reaches a halting configuration.

P colony automata, a variant of P colonies characterizing string languages
instead of multiset collections were introduced in [2] where several of its variants
were shown to be computationally complete.

Generalized P colony automata were introduced in [5] in order to make the
model resemble more to the standard models of membrane computing, in partic-
ular, to the model of P automata, introduced in [4]. In this case, the computation
of the colony defines an accepted multiset sequence, which is turned into an ac-
cepted string (a set of accepted strings, in general) by a non-erasing mapping
(as in P automata).

2 Definitions

Definition 1. A genPCol automaton of capacity k and with n cells, k, n ≥ 1,
is a construct Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) where

– V is the alphabet of the automaton, its elements are called objects;
– e ∈ V is the environmental object of the automaton;
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– wE ∈ (V − {e})∗ is a string representing the multiset of objects different
from e which is found in the environment initially;

– (wi, Pi), 1 ≤ i ≤ n, specifies the i-th cell where wi is a multiset over V , it
determines the initial contents of the cell, and its cardinality |wi| = k is
called the capacity of the system. (Note that the cells may also contain the
environmental object e initially.) The sets Pi of programs are formed from k
rules of the following types:

• tape rules of the form a
T→ b, or a

T↔ b, called rewriting tape rules and
communication tape rules, respectively; or

• nontape rules of the form a → b, or a ↔ b, called rewriting (nontape)
rules and communication (nontape) rules, respectively,

where a, b ∈ V .
A program is called a tape program if it contains at least one tape rule.

– F is a set of accepting configurations of the automaton which we will specify
in more detail below.

A genPCol automaton reads an input word during a computation. A part
of the input (possibly consisting of more than one symbols) is read during each
configuration change: the processed part of the input corresponds to the multiset
of symbols introduced by the tape rules of the system. The application of a tape

program containing the rule a
T→ b or the rule a

T↔ b introduces the object a
into the multiset of symbols read by the system. For a program p, we denote by
read(p) the multiset of all such objects, that is, the multiset of objects from the
left sides of the tape rules contained by p.

A configuration of a genPCol automaton is an (n+ 1)-tuple (uE , u1, . . . , un),
where uE ∈ (V −{e})∗ represents the multiset of objects different from e in the
environment, and ui ∈ V ∗, 1 ≤ i ≤ n, represents the contents of the i-th cell.
The initial configuration is given by (wE , w1, . . . , wn), the initial contents of the
environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE , v1, . . . , vn).

Definition 2. Let Π = (V, e, wE , (w1, P1), . . . , (wn, Pn), F ) be a genPCol au-
tomaton. The set of input sequences accepted by Π is defined as

A(Π) = {u1u2 . . . us | ui ∈ (V − {e})∗, 1 ≤ i ≤ s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE , w1, . . . , wn), cs ∈ F, and

ci =⇒ ci+1 with
⋃
p∈Pci

read(p) = ui+1 for all 0 ≤ i ≤ s− 1}

where Pci is the set of programs applied by the components in the computational
step from ci to ci+1.

The idea behind genPCol automata is that instead of the different compu-
tational modes used in [2], we have a system with programs and we apply the
programs in the maximally parallel way as usual in P colonies, that is, in each
computational step, every component cell must non-deterministically choose and
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apply one of its applicable programs. Then we look at those rules which were
tape rules (in the applied set of programs) and collect all the symbols that they
“read”: this multiset (of the collected symbols) is the multiset read by the system
in the given computational step. A successful computation defines in this way
an accepted sequence of multisets: the sequence of multisets entering the system
during the steps of the computation.

The words accepted by the automaton are otained by applying an input
mapping to the accepted mutliset sequences.

Definition 3. Let Π be a genPCol automaton, and let f : (V − {e})∗ → 2Σ
∗

be a mapping, such that f(u) = {ε} if and only if u is the empty multiset.
The language accepted by Π with respect to f is defined as

L(Π, f) = {f(u1)f(u2) . . . f(us) ∈ Σ∗ | u1u2 . . . us ∈ A(Π)}.

Definition 4.

– L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the communication rules are tape rules,

– L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized
PCol automata with capacity k and with mappings from the class F where
all the programs must have at least one tape rule,

– L(genPCol,F , ∗(k)) is the class of languages accepted by generalized PCol
automata with capacity k and with mappings from the class F where pro-
grams with any kinds of rules are allowed.

For all-tape and com-tape languages we also define their restricted variants,
L(genPCol,F , restricted all-tape(k)) and L(genPCol,F , restricted com-tape(k)),
respectively. These are accepted by systems with programs not having any rules
of types

e
T→ e, a

T→ e, and e
T↔ e, e

T↔ a,

for arbitrary a ∈ V , where e is the special environmental object. Note that
systems which accept languages of these restricted classes must read nonempty
multisets in each computational step.

We denote the mapping f defined for any multiset x ∈ (V − {e})∗ by fperm,
if f(x) = {y ∈ (V − {e})∗ | y ∈ perm(x)} where perm(x) ⊆ V ∗ denotes the set
of strings representing the multiset composed of the symbols of x, or in other
words, perm(x) is the set of strings obtained by a permutation of the symbols of
the multiset x. We denote the languages of systems with this type of mapping
as Lperm(genPCol, X(k)), where X ∈ {com-tape, all-tape, ∗}.

Example 1. Let M = (Σ,Q, δ, q0, F ) be a finite automaton with input alphabet
Σ, set of states Q, initial state q0, set of final states F , and transition function
δ : Σ ×Q→ Q.
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Consider the genPCol automaton Π = (Σ ∪ {qI} ∪ Q, e, wE , (w,P ), F ′) of
capacity two, where qI 6∈ Σ ∪Q, wE =

⋃
a∈Σ{a, a}, and w = eqI . If we have the

set of rules

P = {〈e T↔ a, qI → q0〉 | a ∈ Σ} ∪

{〈x T↔ a, q → q′〉 | for all x ∈ Σ such that δ(x, q) = q′ for some q, q′ ∈ Q},

and set of final configurations F ′ = {(wE − {x}, xqf ) | for all x ∈ Σ, and qf ∈
F}, then Π simulates the computations of M , that is, L(Π) = L(M). To see
this, note that if and only if δ(x, q) = q′, then there is a transition of Π from
(wE−{x}, qx)⇒ (wE−{y}, q′y) for some y ∈ Σ. The computation goes on until
the an object qf ∈ F is introduced, thus, the accepted multiset sequences are
sequences of singleton multisets {a1}{a2} . . . {an} such that a1a2 . . . an ∈ L(M)
with ai ∈ Σ, 1 ≤ i ≤ n. If we have an input mapping f({x}) = x for any x ∈ Σ,
then L(Π, f) = L(M).

3 Results and Open Problems Concerning the Power of
genPCol Automata

The computational capacity of genPCol automata was investigated in [5] and
[6].

Proposition 1 ([5], [6]) For any class of mappings F , we have

1. L(genPCol,F , com-tape(k)) ⊆ L(genPCol,F , ∗(k)) and
L(genPCol,F , all-tape(k)) ⊆ L(genPCol,F , ∗(k) for any k ≥ 1;

2. L(genPCol,F , restricted X(k)) ⊆ L(genPCol,F , X(k)) for any k ≥ 1 and
X ∈ {com-tape, all-tape, ∗}; and

3. L(genPCol,F , X(k)) ⊆ L(genPCol,F , X(k + 1)) for any k ≥ 1 and X ∈
{com-tape, all-tape, ∗}.

In the case of P colonies, all recursively enumerable sets of integers can be
characterized by systems of capacity one, see [1]. This is also true for genPCol
automata with languages obtained by permutation mappings, if programs with
any kind of rules are allowed.

Theorem 2. ([6]) Lperm(genPCol, ∗(1)) = L(RE).

The power of systems with capacity one decreases considerably if not all
kinds of programs are allowed. The next theorem examines the relationship of
regular languages and languages of genPCol automata with all-tape programs.

Theorem 3. ([6]) Lperm(genPCol, all-tape(1)) is incomparable with the class of
regular languages.

Concerning genPCol automata languages that can be accepted by systems
of capacity two, we have the following result. r-1LOGSPACE denotes the class of
languages characterized by so-called restricted one-way logarithmic space bounded
Turing machines, see [3] for more on this complexity class.
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Theorem 4. ([5])

Lperm(genPCol, restricted all-tape(2))∪
Lperm(genPCol, restricted com-tape(2)) ⊆ r-1LOGSPACE.

As the class of languages characterized by P automata is strictly included
in r-1LOGSPACE, the above theorem does not give any information on the
relationship of the power of P automata and genPCol automata. We know,
however, that genPCol automata with restricted all-tape or restricted com-tape
programs are more powerful than P automata using the mapping fperm.

If we denote by LX(fperm, PA) the class of languages characterized by P
automata with X ∈ {seq, par} for parallel or sequential rule application, then
we have the following.

Theorem 5. ([6]) Lperm(genPCol, restricted all-tape(2)) \ LX(fperm, PA) 6= ∅
for X ∈ {seq, par}.

We conjecture, that the class Lperm(genPCol, restricted all-tape(2)) and the
class Lperm(genPCol, restricted com-tape(2)) are both strictly included in the
class r-1LOGSPACE, but the relationship of these classes is subject to further
investigations.

If we allow arbitrary programs, then genPCol automata of capacity two char-
acterize the class of recursively enumerable languages.

Theorem 6. ([5]) Lperm(genPCol, ∗(2)) = L(RE).

The same result holds if we require that all programs contain at least one
tape rule (but unlike in the restricted case, they can also use the environmental
symbol e).

Theorem 7. ([6]) Lperm(genPCol, all-tape(2)) = L(RE).

We do not know, however, what is the power of systems with com-tape type
of programs.

If we consider systems with capacity at least three, their all-tape and com-tape
languages include any recursively enumerable language. Given a recursively enu-
merable language L, the idea is to take a system of capacity two which, when
any kind of programs are allowed, accepts L (we refer to [5] for such a system),
and transform it to a system of capacity three having a communication tape rule
in each program by adding “dummy” tape rules which do not interfere with the
work of the rest of the system.

Proposition 8 ([6])

Lperm(genPCol, X(3)) = L(RE)

for X ∈ {com-tape, all-tape}.
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4 Conclusion

As we have seen, even with capacity one, if we do not place additional restrictions
on the types of programs allowed to be used by the system, genPCol automata
characterize the class of recursively enumerable languages. On the other hand,
for systems with capacity three, even the use of most restrictive program types
does not result in any decrease of the computational power. The most interesting
cases are the ones in between these two: the restricted variants of capacity one
and capacity two. These require further study; especially interesting would be
to refine the relationship of the model with P automata, as they are very closely
related, but not as similar as one might expect at the first glance.

Further, the effect of using checking rules, as defined in [8] for P colonies, is
also an interesting topic for further investigations, just as the investigation of
systems with other classes of input mappings besides fperm. Results for other
kinds of input mappings, similarly to those existing for P automata, would also
be interesting.
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systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (eds.), Membrane
Computing. International Worskhop, WMC-CdeA 2002, Curtea de Arges, Roma-
nia, August 19-23, 2002, Revised Papers. LNCS 2597, Springer Berlin Heidelberg,
2003, 219–233.
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José M. Sempere

Departamento de Sistemas Informáticos y Computación.
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Abstract. In this work we analyze communication P systems under the
framework of Information Theory. Given a cell-like P system with com-
munication and evolution rules, we analyze the amount of information
that it holds as the result of symbol movements across the membranes.
Hence, antiport rules can be defined as bidirectional information chan-
nels, while symport and evolution rules can be viewed as unidirectional in-
formation channels. Under this approach, we propose some results about
the information of a P system and its entropy.

Keywords: Communication P systems, Information Theory, Entropy

Some basic concepts

P systems were introduced as a computational model inspired by the information
and biochemical product processing of living cells through the use of membrane
communication. In most of the works about P systems, information is repre-
sented as multisets of symbol/objects which can interact and evolve according
to predefined rules. From the beginning, the most important component of the
system has been the kind of rules that it holds. There have been different pro-
posals to define the rules of the system such as evolution rules, communication
rules, active rules to create/dissolve membrane structures, active rules with po-
larization, and so on and so forth.

Here, we pay our attention to the following fact: the rules of a P system
produce/consume new symbols in different regions of the system, so they can be
considered information regulators that act over a region, which can be considered
information senders and receivers in a pure communication system. Hence, the
behavior of the P system can be analyzed with Information Theory tools. Mainly,
we can analyze any P system through the characterization of the entropies at
every region according to its membrane structure and rules.

? Work partially supported by the Spanish Ministry of Economy and Competitiveness
under EXPLORA Research Project SAF2013-49788-EXP
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We will introduce basic concepts related to multisets, Information Theory and
P systems. We suggest to the reader the references [3, 4] to introduce membrane
computing, and the books [2, 5] to introduce Information Theory. We will provide
some definitions from multiset theory as exposed in [7].

Let D be a set. A multiset over D is a pair 〈D, f〉 where f : D −→ N is a
function. If A = 〈D, f〉 and B = 〈D, g〉 are two multisets then the removal of
multiset B from A, denoted by A	 B, is the multiset C = 〈D,h〉 where for all
a ∈ D h(a) = max(f(a) − g(a), 0), and their sum, denoted by A ⊕ B, is the
multiset C = 〈D,h〉, where for all a ∈ D h(a) = f(a) + g(a). We will say that
A = B if the multiset (A	B)⊕ (B 	A) is empty that is ∀a ∈ D f(a) = 0.

The size of any multiset M , denoted by |M | will be the number of elements
that it contains.

We can suggest to the reader the books [2, 5] and the classical work by C.E.
Shannon [6] in order to have a full view of Information Theory.

An information source is defined by the tuple (S, P ) where S is an alphabet
and P a probability distribution over S. A cornerstone of Information Theory
is the concept of entropy which is attached to information sources. The entropy
of an information source I, with an alphabet S and probability distribution
P : S → [0, 1] is defined as

H(I) = −
∑
a∈S

P (a) · log2P (a)

Observe that we are working with trivial codes where the alphabet of an
information source is its encoding. In addition, we have fixed the base 2 for
the logarithm, so the information entropy is described in bits. The change from
a binary base to a different one can be easily carried out in a logarithm base
change.

A cell-like P system of degree m with communication rules is a construct

Π = (V, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

– V is an alphabet (the objects)
– µ is a membrane structure consisting of m membranes
– wi, 1 ≤ i ≤ m, is a string representing a multiset over V associated to the

region i
– Ri, 1 ≤ i ≤ m, is a finite set of rules of the form (u, v) with u 6= λ and
v 6= λ (evolution rules), (u, out; v, in) with u 6= λ and v 6= λ (antiport rule)
and (x, out) or (x, in) with x 6= λ (symport rule). The strings u, v and x are
defined over the alphabet V .

– i0 is a number between 1 and m and it specifies the output membrane of Π
(in the case that it equals to ∞ the output is read outside the system).

Observe that, in the previous definition, we have omitted an output alphabet,
a catalyst alphabet and dissolution rules. In addition, we have omitted priorities
in the rule sets and other communication rules with explicit address. The main
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reason is that we want to establish a preliminary analysis with the most simple
systems.

The entropy of a P system

We will define the entropy of a P system by analyzing how the multisets at every
region evolve according to the rules of the system. First, we define the entropy
of the multisets of the regions and, then, the entropy of a P system.

Definition 1. (self-referred entropy of a multiset). Let us consider a mul-
tiset A = 〈D, f〉. The self-referred entropy of A is defined as

Hs(A) = −
∑
a∈D

fr(a) · log2fr(a)

where fr(a) = f(a)
|D| .

Observe that the self-referred entropy of a multiset is a static concept given
that we have substitute the probability distribution by the frecuency of appear-
ance of every object at the region (fr(a)). Observe that there is no external
probability distribution over the rules and the objects.

In the following, we analyze the evolution of self-referred entropies according
to the system computations.

Definition 2. Let Π be a P system of degree m and ct = (µ,wt
1, · · · , wt

m) be a
configuration of the system during a computation at time t. Then

1. The absolute entropy of Π at time t is Ht
abs(Π) =

∑
1≤i≤mHs(w

t
i)

2. The maximal entropy of Π at time t is Ht
max(Π) = max{Hs(w

t
1), · · · , Hs(w

t
m)}

The question about the computation of the entropy of a P system is com-
pletely based on the calculation of the different multisets at every region, ac-
cording to the rules that affect to that region. Hence, at time t the multiset wt

i

will evolve, in the next transition, to the multiset wt
i 	 l(R, i) ⊕ r(R, i), where

l(R, i) is a multiset based on the left hand side of the rules that affect to the
region i, and r(R, i) is a multiset based on the right hand side of the rules that
affect to the region i.

In this work we will overview, among others, the following questions and
aspects :

1. What is the relationship between the kind of rules at every region (symport,
antiport or evolution) and the evolution of its entropy ?

2. What is the definition of confluence under an information theory point of
view ?

3. How does the operational mode (i.e. maximal/minimal parallelism) affect to
entropy ?

4. How is the entropy defined in a stochastic/probabilistic P system ?
5. What is the definition of the entropy of a P system, if the external output

is defined ?
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3. Gh. Păun. Membrane Computing. An Introduction. Springer. 2002.
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Mierlă, L., 195
Milazzo, P., 9

Nicolescu, R., 227
Niculescu, I.M., 195

Pan, L., 249
Porreca, A.E., 27, 39, 217
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